BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4084529)

  • 1. Absorption flattening in the circular dichroism spectra of small membrane fragments.
    Glaeser RM; Jap BK
    Biochemistry; 1985 Nov; 24(23):6398-401. PubMed ID: 4084529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments.
    Wallace BA; Teeters CL
    Biochemistry; 1987 Jan; 26(1):65-70. PubMed ID: 3828309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles.
    Mao D; Wallace BA
    Biochemistry; 1984 Jun; 23(12):2667-73. PubMed ID: 6466606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism study of bacteriorhodopsin-lipid interaction.
    Nishiya T; Tabushi I; Maeda A
    Biochem Biophys Res Commun; 1987 Apr; 144(2):836-40. PubMed ID: 3579943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmental analysis of light-induced proton movement in reconstituted bacteriorhodopsin vesicles.
    Klausner RD; Berman M; Blumenthal R; Weinstein JN; Caplan SR
    Biochemistry; 1982 Jul; 21(15):3643-50. PubMed ID: 7115689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism of halorhodopsin: comparison with bacteriorhodopsin and sensory rhodopsin I.
    Hasselbacher CA; Spudich JL; Dewey TG
    Biochemistry; 1988 Apr; 27(7):2540-6. PubMed ID: 3382638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films.
    Muccio DD; Cassim JY
    Biophys J; 1979 Jun; 26(3):427-40. PubMed ID: 262427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets.
    Wallace BA; Mao D
    Anal Biochem; 1984 Nov; 142(2):317-28. PubMed ID: 6528970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a carboxyl group in the vicinity of the retinal chromophore of bacteriorhodopsin.
    Herz JM; Hrabeta E; Packer L
    Biochem Biophys Res Commun; 1983 Jul; 114(2):872-81. PubMed ID: 6882459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption spectral properties of acetylated bacteriorhodopsin in purple membrane depending on pH.
    Maeda A; Takeuchi Y; Yoshizawa T
    Biochemistry; 1982 Aug; 21(18):4479-83. PubMed ID: 7126552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein rotation and chromophore orientation in reconstituted bacteriorhodopsin vesicles.
    Hoffmann W; Restall CJ; Hyla R; Chapman D
    Biochim Biophys Acta; 1980 Nov; 602(3):531-8. PubMed ID: 6893670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the two-dimensional hexagonal lattice of bacteriorhodopsin in reconstituted brown membrane.
    Hiraki K; Hamanaka T; Mitsui T; Kito Y
    Biochim Biophys Acta; 1978 Sep; 536(1):318-22. PubMed ID: 708772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of halorhodopsin from Halobacterium halobium.
    Sugiyama Y; Mukohata Y
    J Biochem; 1984 Aug; 96(2):413-20. PubMed ID: 6501249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile anesthetics cause conformational changes of bacteriorhodopsin in purple membrane.
    Nishimura S; Mashimo T; Hiraki K; Hamanaka T; Kito Y; Yoshiya I
    Biochim Biophys Acta; 1985 Sep; 818(3):421-4. PubMed ID: 4041446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin "detergent-monomers," blue shift and velocity of light-dark adaptation.
    Massotte D; Aghion J
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1301-5. PubMed ID: 1764081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoselection and circular dichroism in the purple membrane.
    Godfrey RE
    Biophys J; 1982 Apr; 38(1):1-6. PubMed ID: 7074194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential.
    Swords NA; Wallace BA
    Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical effects in the absorption and optical activity of particulate suspensions.
    Bustamante C; Maestre MF
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8482-6. PubMed ID: 3186738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation.
    Rigaud JL; Bluzat A; Buschlen S
    Biochem Biophys Res Commun; 1983 Mar; 111(2):373-82. PubMed ID: 6838566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoelectric forms of bacteriorhodopsin from Halobacterium halobium.
    Plantner JJ; Kean EL
    Biochim Biophys Acta; 1981 Aug; 670(1):32-8. PubMed ID: 7272328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.