These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 4084535)
1. Isomer-specific proteolysis of model substrates: influence that the location of the proline residue exerts on cis/trans specificity. Lin LN; Brandts JF Biochemistry; 1985 Nov; 24(23):6533-8. PubMed ID: 4084535 [TBL] [Abstract][Full Text] [Related]
2. Determination of cis-trans proline isomerization by trypsin proteolysis. Application to a model pentapeptide and to oxidized ribonuclease A. Lin LN; Brandts JF Biochemistry; 1983 Feb; 22(3):553-9. PubMed ID: 6838811 [TBL] [Abstract][Full Text] [Related]
3. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Fiedler F Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848 [TBL] [Abstract][Full Text] [Related]
4. Evidence suggesting that some proteolytic enzymes may cleave only the trans form of the peptide bond. Lin LN; Brandts JF Biochemistry; 1979 Jan; 18(1):43-7. PubMed ID: 570405 [TBL] [Abstract][Full Text] [Related]
5. Conformational specificity of chymotrypsin toward proline-containing substrates. Fischer G; Bang H; Berger E; Schellenberger A Biochim Biophys Acta; 1984 Nov; 791(1):87-97. PubMed ID: 6498206 [TBL] [Abstract][Full Text] [Related]
6. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis. Lin LN; Brandts JF Biochemistry; 1984 Nov; 23(24):5713-23. PubMed ID: 6441592 [TBL] [Abstract][Full Text] [Related]
7. Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates. McRae BJ; Kurachi K; Heimark RL; Fujikawa K; Davie EW; Powers JC Biochemistry; 1981 Dec; 20(25):7196-206. PubMed ID: 6976185 [TBL] [Abstract][Full Text] [Related]
8. Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. King GF; Middlehurst CR; Kuchel PW Biochemistry; 1986 Mar; 25(5):1054-62. PubMed ID: 3964660 [TBL] [Abstract][Full Text] [Related]
9. Evidence showing that a proline-specific endopeptidase has an absolute requirement for a trans peptide bond immediately preceding the active bond. Lin LN; Brandts JF Biochemistry; 1983 Sep; 22(19):4480-5. PubMed ID: 6354257 [TBL] [Abstract][Full Text] [Related]
11. [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides]. Fischer G; Bang H; Mech C Biomed Biochim Acta; 1984; 43(10):1101-11. PubMed ID: 6395866 [TBL] [Abstract][Full Text] [Related]
12. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme. Atassi MZ; Manshouri T Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494 [TBL] [Abstract][Full Text] [Related]
13. The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline-specific proteases. Fischer G; Heins J; Barth A Biochim Biophys Acta; 1983 Feb; 742(3):452-62. PubMed ID: 6340741 [TBL] [Abstract][Full Text] [Related]
14. Secondary and conformational specificities of trypsin and chymotrypsin. Wright HT Eur J Biochem; 1977 Mar; 73(2):567-78. PubMed ID: 849748 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure and biochemical investigations reveal novel mode of substrate selectivity and illuminate substrate inhibition and allostericity in a subfamily of Xaa-Pro dipeptidases. Are VN; Kumar A; Kumar S; Goyal VD; Ghosh B; Bhatnagar D; Jamdar SN; Makde RD Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):153-164. PubMed ID: 27816563 [TBL] [Abstract][Full Text] [Related]
17. A new beta-naphthylamide substrate of p-guanidino-L-phenylalanine for trypsin and related enzymes. Tsunematsu H; Ando K; Hatanaka Y; Mizusaki K; Isobe R; Makisumi S J Biochem; 1985 Dec; 98(6):1597-602. PubMed ID: 3912388 [TBL] [Abstract][Full Text] [Related]
18. Kinetic investigation of the alpha-chymotrypsin-catalyzed hydrolysis of peptide substrates. The relationship between the peptide structure C-terminal to the cleaved bond and reactivity. Bizzozero SA; Baumann WK; Dutler H Eur J Biochem; 1982 Feb; 122(2):251-8. PubMed ID: 7060575 [TBL] [Abstract][Full Text] [Related]
19. Converting trypsin to chymotrypsin: the role of surface loops. Hedstrom L; Szilagyi L; Rutter WJ Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide. Juliano MA; Juliano L Braz J Med Biol Res; 1985; 18(4):435-45. PubMed ID: 3915433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]