BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 4084535)

  • 1. Isomer-specific proteolysis of model substrates: influence that the location of the proline residue exerts on cis/trans specificity.
    Lin LN; Brandts JF
    Biochemistry; 1985 Nov; 24(23):6533-8. PubMed ID: 4084535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of cis-trans proline isomerization by trypsin proteolysis. Application to a model pentapeptide and to oxidized ribonuclease A.
    Lin LN; Brandts JF
    Biochemistry; 1983 Feb; 22(3):553-9. PubMed ID: 6838811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin.
    Fiedler F
    Eur J Biochem; 1987 Mar; 163(2):303-12. PubMed ID: 3643848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence suggesting that some proteolytic enzymes may cleave only the trans form of the peptide bond.
    Lin LN; Brandts JF
    Biochemistry; 1979 Jan; 18(1):43-7. PubMed ID: 570405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational specificity of chymotrypsin toward proline-containing substrates.
    Fischer G; Bang H; Berger E; Schellenberger A
    Biochim Biophys Acta; 1984 Nov; 791(1):87-97. PubMed ID: 6498206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of prolines-114 and -117 in the slow refolding phase of ribonuclease A as determined by isomer-specific proteolysis.
    Lin LN; Brandts JF
    Biochemistry; 1984 Nov; 23(24):5713-23. PubMed ID: 6441592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the active sites of bovine thrombin, factor IXa, factor Xa, factor XIa, factor XIIa, plasma kallikrein, and trypsin with amino acid and peptide thioesters: development of new sensitive substrates.
    McRae BJ; Kurachi K; Heimark RL; Fujikawa K; Davie EW; Powers JC
    Biochemistry; 1981 Dec; 20(25):7196-206. PubMed ID: 6976185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct NMR evidence that prolidase is specific for the trans isomer of imidodipeptide substrates.
    King GF; Middlehurst CR; Kuchel PW
    Biochemistry; 1986 Mar; 25(5):1054-62. PubMed ID: 3964660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence showing that a proline-specific endopeptidase has an absolute requirement for a trans peptide bond immediately preceding the active bond.
    Lin LN; Brandts JF
    Biochemistry; 1983 Sep; 22(19):4480-5. PubMed ID: 6354257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin specificity increased through substrate-assisted catalysis.
    Corey DR; Willett WS; Coombs GS; Craik CS
    Biochemistry; 1995 Sep; 34(36):11521-7. PubMed ID: 7547882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides].
    Fischer G; Bang H; Mech C
    Biomed Biochim Acta; 1984; 43(10):1101-11. PubMed ID: 6395866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of peptide enzymes (pepzymes): surface-simulation synthetic peptides that mimic the chymotrypsin and trypsin active sites exhibit the activity and specificity of the respective enzyme.
    Atassi MZ; Manshouri T
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8282-6. PubMed ID: 8367494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformation around the peptide bond between the P1- and P2-positions is important for catalytic activity of some proline-specific proteases.
    Fischer G; Heins J; Barth A
    Biochim Biophys Acta; 1983 Feb; 742(3):452-62. PubMed ID: 6340741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary and conformational specificities of trypsin and chymotrypsin.
    Wright HT
    Eur J Biochem; 1977 Mar; 73(2):567-78. PubMed ID: 849748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure and biochemical investigations reveal novel mode of substrate selectivity and illuminate substrate inhibition and allostericity in a subfamily of Xaa-Pro dipeptidases.
    Are VN; Kumar A; Kumar S; Goyal VD; Ghosh B; Bhatnagar D; Jamdar SN; Makde RD
    Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):153-164. PubMed ID: 27816563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new beta-naphthylamide substrate of p-guanidino-L-phenylalanine for trypsin and related enzymes.
    Tsunematsu H; Ando K; Hatanaka Y; Mizusaki K; Isobe R; Makisumi S
    J Biochem; 1985 Dec; 98(6):1597-602. PubMed ID: 3912388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic investigation of the alpha-chymotrypsin-catalyzed hydrolysis of peptide substrates. The relationship between the peptide structure C-terminal to the cleaved bond and reactivity.
    Bizzozero SA; Baumann WK; Dutler H
    Eur J Biochem; 1982 Feb; 122(2):251-8. PubMed ID: 7060575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converting trypsin to chymotrypsin: the role of surface loops.
    Hedstrom L; Szilagyi L; Rutter WJ
    Science; 1992 Mar; 255(5049):1249-53. PubMed ID: 1546324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide.
    Juliano MA; Juliano L
    Braz J Med Biol Res; 1985; 18(4):435-45. PubMed ID: 3915433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.