BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4084551)

  • 1. A double-quenching method for studying protein dynamics: separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors.
    Somogyi B; Papp S; Rosenberg A; Seres I; Matkó J; Welch GR; Nagy P
    Biochemistry; 1985 Nov; 24(23):6674-9. PubMed ID: 4084551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence study of Escherichia coli cyclic AMP receptor protein.
    Wasylewski M; Małecki J; Wasylewski Z
    J Protein Chem; 1995 Jul; 14(5):299-308. PubMed ID: 8590598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-linear least-squares approach to the resolution of heterogeneous fluorescence from multitryptophan proteins.
    Acuña AU; Lopez-Hernandez FJ; Oton JM
    Biophys Chem; 1982 Nov; 16(3):253-60. PubMed ID: 7171718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching- and time-resolved spectroscopy.
    Nishimoto E; Yamashita S; Yamasaki N; Imoto T
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):329-36. PubMed ID: 10192915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the electronic and steric environments of tyrosyl residues in ribonuclease A and Erwinia carotovora L-asparaginase through fluorescence quenching by caesium, iodide and phosphate ions.
    Homer RB; Allsopp SR
    Biochim Biophys Acta; 1976 Jun; 434(2):297-310. PubMed ID: 986170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence quenching studies of Trp repressor-operator interaction.
    Blicharska Z; Wasylewski Z
    J Protein Chem; 1999 Nov; 18(8):823-30. PubMed ID: 10839618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of fluorescence quenching of ribosome-bound virginiamycin S.
    Di Giambattista M; Ide G; Engelborghs Y; Cocito C
    J Biol Chem; 1984 May; 259(10):6334-9. PubMed ID: 6427212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of the phosphorescence quantum yield of various alpha-lactalbumins and of hen egg-white lysozyme.
    Smith CA; Maki AH
    Biophys J; 1993 Jun; 64(6):1885-95. PubMed ID: 8369413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gated quenching of intrinsic fluorescence and phosphorescence of globular proteins. An extended model.
    Somogyi B; Norman JA; Rosenberg A
    Biophys J; 1986 Jul; 50(1):55-61. PubMed ID: 3730507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of tryptophanyl residues and protein dynamics.
    Eftink MR; Ghiron CA
    Biochemistry; 1977 Dec; 16(25):5546-51. PubMed ID: 921949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state and time-resolved fluorescence studies on Trichosanthes cucumerina seed lectin.
    Kenoth R; Swamy MJ
    J Photochem Photobiol B; 2003 Mar; 69(3):193-201. PubMed ID: 12695033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.