BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4084551)

  • 21. Inaccessibility of tryptophan residues of recombinant human renin to quenching agents.
    Epps DE; Poorman R; Hui J; Carlson W; Heinrikson R
    J Biol Chem; 1987 Aug; 262(22):10570-3. PubMed ID: 3301839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism.
    Somogyi B; Norman JA; Punyiczki M; Rosenberg A
    Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional fluorescence correlation spectroscopy IV: resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme.
    Fukuma H; Nakashima K; Ozaki Y; Noda I
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):517-22. PubMed ID: 16520086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unravelling the Intricacy of the Crowded Environment through Tryptophan Quenching in Lysozyme.
    Singh P; Chowdhury PK
    J Phys Chem B; 2017 May; 121(18):4687-4699. PubMed ID: 28388056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic analysis of halothane binding to the plasma membrane Ca2+-ATPase.
    Lopez MM; Kosk-Kosicka D
    Biophys J; 1998 Feb; 74(2 Pt 1):974-80. PubMed ID: 9533708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence-quenching-resolved spectroscopy of proteins.
    Wasylewski Z; poloczek H; Wasniowska A
    Eur J Biochem; 1988 Mar; 172(3):719-24. PubMed ID: 3350020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence quenching with lindane in small unilamellar L,alpha-dimyristoylphosphatidylcholine vesicles.
    Daems D; Boens N; De Schryver FC
    Eur Biophys J; 1989; 17(1):25-36. PubMed ID: 2473894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between activity and dynamics of the protein matrix of phosphorylase b.
    Matkó J; Trón L; Balázs M; Hevessy J; Somogyi B; Damjanovich S
    Biochemistry; 1980 Dec; 19(25):5782-6. PubMed ID: 6779867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching.
    Miyata H; Asai H
    J Biochem; 1981 Jul; 90(1):133-9. PubMed ID: 7026547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for an alpha-helical epitope on outer surface protein A from the Lyme disease spirochete, Borrelia burgdorferi: an application of steady-state and time-resolved fluorescence quenching techniques.
    France LL; Kieleczawa J; Dunn JJ; Luft BJ; Hind G; Sutherland JC
    Biochim Biophys Acta; 1993 Oct; 1202(2):287-96. PubMed ID: 7691186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].
    Vermishian IG; Sharoian SG; Antonian AA; Grigorian NA; Mardanian SS; Khoetsian AV; Markarian ShA
    Biofizika; 2008; 53(2):213-21. PubMed ID: 18543763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of dipyridamole with micelles of lysophosphatidylcholine and with bovine serum albumin: fluorescence studies.
    Tabak M; Borisevitch IE
    Biochim Biophys Acta; 1992 Jun; 1116(3):241-9. PubMed ID: 1610879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence-quenching-resolved spectra of melittin in lipid bilayers.
    Kaszycki P; Wasylewski Z
    Biochim Biophys Acta; 1990 Sep; 1040(3):337-45. PubMed ID: 2223839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency.
    Taylor PN; Patterson HH; Klimis-Tavantzis DJ
    Biol Trace Elem Res; 1997; 60(1-2):69-80. PubMed ID: 9404676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence quenching and time-resolved fluorescence studies of alpha-mannosidase from Aspergillus fischeri (NCIM 508).
    Shashidhara KS; Gaikwad SM
    J Fluoresc; 2007 Nov; 17(6):599-605. PubMed ID: 17849180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor.
    Komiyama T; Miwa M
    J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.