BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4084569)

  • 1. Flexibility of the molecular forms of acetylcholinesterase measured with steady-state and time-correlated fluorescence polarization spectroscopy.
    Berman HA; Yguerabide J; Taylor P
    Biochemistry; 1985 Dec; 24(25):7140-7. PubMed ID: 4084569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site selectivity of fluorescent bisquaternary phenanthridinium ligands for acetylcholinesterase.
    Berman HA; Decker MM; Nowak MW; Leonard KJ; McCauley M; Baker WM; Taylor P
    Mol Pharmacol; 1987 Jun; 31(6):610-6. PubMed ID: 3600605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent organophosphates: novel probes for studying aging-induced conformational changes in inhibited acetylcholinesterase and for localization of cholinesterase in nervous tissue.
    Amitai G; Ashani Y; Shahar A; Gafni A; Silman I
    Monogr Neural Sci; 1980; 7():70-84. PubMed ID: 7015117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular forms of acetylcholinesterase from Torpedo californica: their relationship to synaptic membranes.
    Lwebuga-Mukasa JS; Lappi S; Taylor P
    Biochemistry; 1976 Apr; 15(7):1425-34. PubMed ID: 177042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent phosphonate labels for serine hydrolases. Kinetic and spectroscopic properties of (7-nitrobenz-2-oxa-1,3-diazole)aminoalkyl methylphosphonofluoridates and their conjugates with acetylcholinesterase molecular forms.
    Berman HA; Olshefski DF; Gilbert M; Decker MM
    J Biol Chem; 1985 Mar; 260(6):3462-8. PubMed ID: 3972833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH2-terminal and active center sequences.
    MacPhee-Quigley K; Taylor P; Taylor S
    J Biol Chem; 1985 Oct; 260(22):12185-9. PubMed ID: 3900071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding.
    Taylor P; Lappi S
    Biochemistry; 1975 May; 14(9):1989-97. PubMed ID: 1125207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution dynamics of p21ras proteins bound with fluorescent nucleotides: a time-resolved fluorescence study.
    Hazlett TL; Moore KJ; Lowe PN; Jameson DM; Eccleston JF
    Biochemistry; 1993 Dec; 32(49):13575-83. PubMed ID: 8257693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.
    Volkmer A; Subramaniam V; Birch DJ; Jovin TM
    Biophys J; 2000 Mar; 78(3):1589-98. PubMed ID: 10692343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation similarities of the globular and tailed forms of acetylcholinesterase from Torpedo californica.
    Wu CS; Gan L; Yang JT
    Biochim Biophys Acta; 1987 Jan; 911(1):25-36. PubMed ID: 3790597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy decay measurement of segmental dynamics of the anion binding domain in erythrocyte band 3.
    Bicknese S; Rossi M; Thevenin B; Shohet SB; Verkman AS
    Biochemistry; 1995 Aug; 34(33):10645-51. PubMed ID: 7544617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric eel acetylcholinesterase: a multisubunit enzyme containing a collagen tail.
    Silman I; Anglister L
    Monogr Neural Sci; 1980; 7():55-69. PubMed ID: 6262636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen-tailed and hydrophobic components of acetylcholinesterase in Torpedo marmorata electric organ.
    Bon S; Massoulié J
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4464-8. PubMed ID: 6933497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of rotational correlation times from deconvoluted fluorescence anisotropy decay curves. Demonstration with 6,7-dimethyl-8-ribityllumazine and lumazine protein from Photobacterium leiognathi as fluorescent indicators.
    Visser AJ; Ykema T; van Hoek A; O'Kane DJ; Lee J
    Biochemistry; 1985 Mar; 24(6):1489-96. PubMed ID: 3986188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural differences in the catalytic subunits of acetylcholinesterase forms from the electric organ of Torpedo marmorata.
    Witzemann V; Boustead C
    EMBO J; 1983; 2(6):873-8. PubMed ID: 6641720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.
    Davenport L; Targowski P
    Biophys J; 1996 Oct; 71(4):1837-52. PubMed ID: 8889160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-functional effects of a series of alcohols on acetylcholinesterase-associated membrane vesicles: elucidation of factors contributing to the alcohol action.
    Lasner M; Roth LG; Chen CH
    Arch Biochem Biophys; 1995 Mar; 317(2):391-6. PubMed ID: 7893154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.