These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 4084575)
21. Modification of Rhodospirillum rubrum ribulose bisphosphate carboxylase with pyridoxal phosphate. 1. Identification of a lysyl residue at the active site. Whitman WB; Tabita FR Biochemistry; 1978 Apr; 17(7):1282-7. PubMed ID: 26381 [TBL] [Abstract][Full Text] [Related]
22. Bromopyruvate as an active-site-directed inhibitor of the pyruvate dehydrogenase multienzyme complex from Escherichia coli. Lowe PN; Perham RN Biochemistry; 1984 Jan; 23(1):91-7. PubMed ID: 6362725 [TBL] [Abstract][Full Text] [Related]
23. Modification of pig M4 lactate dehydrogenase by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue. Chen SS; Engel PC Biochem J; 1975 Jul; 149(1):107-13. PubMed ID: 1238085 [TBL] [Abstract][Full Text] [Related]
24. Purification and properties of pyruvate dehydrogenase phosphatase from bovine heart and kidney. Teague WM; Pettit FH; Wu TL; Silberman SR; Reed LJ Biochemistry; 1982 Oct; 21(22):5585-92. PubMed ID: 6293549 [TBL] [Abstract][Full Text] [Related]
25. Biphasic inactivation of procine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate. Wimmer MJ; Mo T; Sawyers DL; Harrison JH J Biol Chem; 1975 Jan; 250(2):710-5. PubMed ID: 1112783 [TBL] [Abstract][Full Text] [Related]
26. Formation of N-hydroxy-N-arylacetamides from nitroso aromatic compounds by the mammalian pyruvate dehydrogenase complex. Yoshioka T; Uematsu T Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):783-90. PubMed ID: 8457207 [TBL] [Abstract][Full Text] [Related]
27. Modification of lactate dehydrogenase by pyridoxal phosphate and adenosine polyphosphopyridoxal. Tagaya M; Fukui T Biochemistry; 1986 May; 25(10):2958-64. PubMed ID: 3718933 [TBL] [Abstract][Full Text] [Related]
28. Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complexes from bacterial and mammalian sources. Stanley CJ; Packman LC; Danson MJ; Henderson CE; Perham RN Biochem J; 1981 Jun; 195(3):715-21. PubMed ID: 7032507 [TBL] [Abstract][Full Text] [Related]
29. Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat. Hutson NJ; Kerbey AL; Randle PJ; Sugden PH Biochem J; 1978 Aug; 173(2):669-680. PubMed ID: 212016 [TBL] [Abstract][Full Text] [Related]
30. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation. Walsh DA; Cooper RH; Denton RM; Bridges BJ; Randle PJ Biochem J; 1976 Jul; 157(1):41-67. PubMed ID: 183746 [TBL] [Abstract][Full Text] [Related]
31. Overexpression and characterization of human tetrameric pyruvate dehydrogenase and its individual subunits. Korotchkina LG; Tucker MM; Thekkumkara TJ; Madhusudhan KT; Pons G; Kim H; Patel MS Protein Expr Purif; 1995 Feb; 6(1):79-90. PubMed ID: 7756842 [TBL] [Abstract][Full Text] [Related]
32. Modulation of the catalytic activity of brain succinic semialdehyde reductase by reaction with pyridoxal 5'-phosphate. Hong JW; Cho SW; Yoo JS; Yoo BK; Lee KS; Choi SY Eur J Biochem; 1997 Jul; 247(1):274-9. PubMed ID: 9249037 [TBL] [Abstract][Full Text] [Related]
33. Incorporation of [32P]phosphate into the pyruvate dehydrogenase complex in rat heart mitochondria. Sale GJ; Randle PJ Biochem J; 1980 May; 188(2):409-21. PubMed ID: 7396870 [TBL] [Abstract][Full Text] [Related]
34. Mutagenesis studies of the phosphorylation sites of recombinant human pyruvate dehydrogenase. Site-specific regulation. Korotchkina LG; Patel MS J Biol Chem; 1995 Jun; 270(24):14297-304. PubMed ID: 7782287 [TBL] [Abstract][Full Text] [Related]
35. Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 A resolution. Arjunan P; Nemeria N; Brunskill A; Chandrasekhar K; Sax M; Yan Y; Jordan F; Guest JR; Furey W Biochemistry; 2002 Apr; 41(16):5213-21. PubMed ID: 11955070 [TBL] [Abstract][Full Text] [Related]
36. Evidence for an essential lysine at the active site of L-histidinol:NAD+ oxidoreductase; a bifunctional dehydrogenase. Bürger E; Görisch H Eur J Biochem; 1981 Aug; 118(1):125-30. PubMed ID: 6793363 [TBL] [Abstract][Full Text] [Related]
37. Studies on the succinate dehydrogenating system. Interaction of the mitochondrial succinate-ubiquinone reductase with pyridoxal phosphate. Choudhry ZM; Kotlyar AB; Vinogradov AD Biochim Biophys Acta; 1986 Jun; 850(1):131-8. PubMed ID: 3707947 [TBL] [Abstract][Full Text] [Related]
38. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex. Seifert F; Ciszak E; Korotchkina L; Golbik R; Spinka M; Dominiak P; Sidhu S; Brauer J; Patel MS; Tittmann K Biochemistry; 2007 May; 46(21):6277-87. PubMed ID: 17474719 [TBL] [Abstract][Full Text] [Related]
39. Expression of pyruvate dehydrogenase isoforms during the aerobic/anaerobic transition in the development of the parasitic nematode Ascaris suum: altered stoichiometry of phosphorylation/inactivation. Huang YJ; Walker D; Chen W; Klingbeil M; Komuniecki R Arch Biochem Biophys; 1998 Apr; 352(2):263-70. PubMed ID: 9587415 [TBL] [Abstract][Full Text] [Related]