BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4084611)

  • 1. A new method for decay-associated fluorescence spectroscopy. Application to the tryptophan zwitterion.
    Privat JP; Wahl P; Brochon JC
    Biochimie; 1985 Sep; 67(9):949-58. PubMed ID: 4084611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation.
    Lakowicz JR; Gryczynski I
    Biophys Chem; 1992 Nov; 45(1):1-6. PubMed ID: 1467440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous analysis of single-photon timing data for the one-step determination of activation energies, frequency factors and quenching rate constants. Application to tryptophan photophysics.
    Boens N; Janssens LD; De Schryver FC
    Biophys Chem; 1989 Mar; 33(1):77-90. PubMed ID: 2720093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential-wavelength deconvolution of time-resolved fluorescence intensities. A new method for the analysis of excited-state processes.
    Lakowicz JR; Balter A
    Biophys Chem; 1982 Nov; 16(3):223-40. PubMed ID: 7171715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of subnanosecond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar ion laser.
    Visser AJ; van Hoek A
    J Biochem Biophys Methods; 1979 Aug; 1(4):195-208. PubMed ID: 233237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics.
    Vos K; van Hoek A; Visser AJ
    Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new component in protein fluorescence.
    Longworth JW
    Ann N Y Acad Sci; 1981; 366():237-45. PubMed ID: 6942747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan.
    Demchenko AP; Ladokhin AS
    Eur Biophys J; 1988; 15(6):369-79. PubMed ID: 3371274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Simultaneous determination of tryptophan and tyrosine in injection by artificial neural network and fluorescence spectrum method].
    Wu GH; He CY; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):318-21. PubMed ID: 12961882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The temperature dependence of the fluorescence decay of low-density lipoproteins.
    Spragg SP; Wijnaendts van Resandt RW
    Biochim Biophys Acta; 1984 Jan; 792(1):84-91. PubMed ID: 6692002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Polarization of intrinsic fluorescence of proteins. II. Application for the study of equilibrium dynamics of tryptophan residues].
    Turoverov KK; Kuznetsova IM
    Mol Biol (Mosk); 1983; 17(3):468-74. PubMed ID: 6877228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin.
    Ross JB; Wyssbrod HR; Porter RA; Schwartz GP; Michaels CA; Laws WR
    Biochemistry; 1992 Feb; 31(6):1585-94. PubMed ID: 1737015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-quenching-resolved spectroscopy of proteins.
    Wasylewski Z; poloczek H; Wasniowska A
    Eur J Biochem; 1988 Mar; 172(3):719-24. PubMed ID: 3350020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc.
    Xu J; Toptygin D; Graver KJ; Albertini RA; Savtchenko RS; Meadow ND; Roseman S; Callis PR; Brand L; Knutson JR
    J Am Chem Soc; 2006 Feb; 128(4):1214-21. PubMed ID: 16433538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of deactivation processes of indole derivatives in water-organic solvent mixtures--application to tryptophyl fluorescence of proteins.
    Privat JP; Wahl P; Auchet JC
    Biophys Chem; 1979 Mar; 9(3):223-33. PubMed ID: 454800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The recovery of dipolar relaxation times from fluorescence decays as a tool to probe local dynamics in single tryptophan proteins.
    Mei G; Di Venere A; De Matteis F; Rosato N
    Arch Biochem Biophys; 2003 Sep; 417(2):159-64. PubMed ID: 12941297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.