These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 4084686)
1. Pattern regulation in reaction-diffusion systems--the problem of size invariance. Babloyantz A; Bellemans A Bull Math Biol; 1985; 47(4):475-87. PubMed ID: 4084686 [No Abstract] [Full Text] [Related]
2. Bifurcations of nonlinear reaction-diffusion systems in oblate spheroids. Hunding A J Math Biol; 1984; 19(3):249-63. PubMed ID: 6470580 [TBL] [Abstract][Full Text] [Related]
3. A reaction-diffusion theory of morphogenesis with inherent pattern invariance under scale variations. Papageorgiou S; Venieratos D J Theor Biol; 1983 Jan; 100(1):57-79. PubMed ID: 6834861 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear pattern selection in a mechanical model for morphogenesis. Perelson AS; Maini PK; Murray JD; Hyman JM; Oster GF J Math Biol; 1986; 24(5):525-41. PubMed ID: 3805909 [TBL] [Abstract][Full Text] [Related]
6. Pattern formation and morphogenesis: a reaction-diffusion model. Tapaswi PK; Saha AK Bull Math Biol; 1986; 48(2):213-28. PubMed ID: 3719157 [No Abstract] [Full Text] [Related]
7. Pattern sensitivity to boundary and initial conditions in reaction diffusion models of pattern formation. Arcuri PA; Murray JD Prog Clin Biol Res; 1986; 217A():75-8. PubMed ID: 3749163 [No Abstract] [Full Text] [Related]
9. [Properties of stationary dissipative structures in mathematical models of morphogenesis]. Kerner BS; Osipov VV Biofizika; 1982; 27(1):137-43. PubMed ID: 7066383 [TBL] [Abstract][Full Text] [Related]
10. Physico-chemical model of a protocell. Schwegler H; Tarumi K; Gerstmann B J Math Biol; 1985; 22(3):335-48. PubMed ID: 4067443 [TBL] [Abstract][Full Text] [Related]
11. On the heterogeneity of reaction-diffusion generated pattern. Berding C Bull Math Biol; 1987; 49(2):233-52. PubMed ID: 3607341 [No Abstract] [Full Text] [Related]
12. Solutions to systems of nonlinear reaction-diffusion equations. Rosen G Bull Math Biol; 1975 Jun; 37(3):277-89. PubMed ID: 1156701 [No Abstract] [Full Text] [Related]
13. Scale-invariance in reaction-diffusion models of spatial pattern formation. Othmer HG; Pate E Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4180-4. PubMed ID: 6933464 [TBL] [Abstract][Full Text] [Related]
14. Some analytical results about a simple reaction-diffusion system for morphogenesis. Rothe F J Math Biol; 1979 May; 7(4):375-84. PubMed ID: 469415 [TBL] [Abstract][Full Text] [Related]
15. [Problem of sphere formation in mathematical models of morphogenesis]. Filippov VB Biofizika; 1978; 23(6):1081-8. PubMed ID: 719024 [TBL] [Abstract][Full Text] [Related]
16. How well does Turing's theory of morphogenesis work? Bard J; Lauder I J Theor Biol; 1974 Jun; 45(2):501-31. PubMed ID: 4844631 [No Abstract] [Full Text] [Related]
17. Formation of a regular dissipative structure: a bifurcation and non-linear analysis. Chattopadhyay J; Tapaswi PK; Mukherjee D Biosystems; 1992; 26(4):211-22. PubMed ID: 1627732 [TBL] [Abstract][Full Text] [Related]
18. The time needed to set up a gradient: detailed calculations. Munro M; Crick FH Symp Soc Exp Biol; 1971; 25():439-53. PubMed ID: 5117399 [No Abstract] [Full Text] [Related]
19. Self-organization in biological systems with multiple cellular contacts. Babloyantz A; Kaczmarek LK Bull Math Biol; 1979; 41(2):193-201. PubMed ID: 760882 [No Abstract] [Full Text] [Related]
20. Applications of a model for scale-invariant pattern formation in developing systems. Pate E; Othmer HG Differentiation; 1984; 28(1):1-8. PubMed ID: 6519366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]