These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4084947)

  • 1. Role of uptake in gamma-aminobutyric acid (GABA)-mediated responses in guinea pig hippocampal neurons.
    Hablitz JJ; Lebeda FJ
    Cell Mol Neurobiol; 1985 Dec; 5(4):353-71. PubMed ID: 4084947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice.
    Dingledine R; Korn SJ
    J Physiol; 1985 Sep; 366():387-409. PubMed ID: 2414435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro.
    Thompson SM; Gähwiler BH
    J Neurophysiol; 1989 Mar; 61(3):524-33. PubMed ID: 2540290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections.
    Segal M; Barker JL
    J Neurophysiol; 1984 Sep; 52(3):469-87. PubMed ID: 6148383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The time course of GABA action on the crayfish stretch receptor: evidence for a saturable GABA uptake.
    Deisz RA; Dose M; Lux HD
    Neurosci Lett; 1984 Jun; 47(3):245-50. PubMed ID: 6089040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolongation of gamma-aminobutyric acid-mediated inhibitory postsynaptic potentials by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO).
    Korn SJ; Dingledine R
    Neurosci Lett; 1986 Feb; 64(1):47-52. PubMed ID: 3960387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous firing of inhibitory interneurons results in saturation of fast GABA(A) IPSC magnitude but not saturation of fast inhibitory efficacy in rat neocortical pyramidal cells.
    Ling DS; Benardo LS
    Synapse; 1998 Jan; 28(1):91-102. PubMed ID: 9414022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones.
    Roepstorff A; Lambert JD
    Neurosci Lett; 1992 Nov; 146(2):131-4. PubMed ID: 1337191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig.
    Brown DA; Scholfield CN
    Br J Pharmacol; 1984 Sep; 83(1):195-202. PubMed ID: 6237704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional GABA uptake at inhibitory synapses in CA1 of chronically epileptic rats.
    Stief F; Piechotta A; Gabriel S; Schmitz D; Draguhn A
    Epilepsy Res; 2005; 66(1-3):199-202. PubMed ID: 16154723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent enhancement of hyperpolarizing and depolarizing gamma-aminobutyric acid (GABA) synaptic responses following inhibition of GABA uptake by tiagabine.
    Jackson MF; Esplin B; Capek R
    Epilepsy Res; 1999 Oct; 37(1):25-36. PubMed ID: 10515172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic action of endogenous GABA released by nipecotic acid in the hippocampus.
    Solís JM; Nicoll RA
    Neurosci Lett; 1992 Nov; 147(1):16-20. PubMed ID: 1336151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nipecotic acid, an uptake blocker, prevents fading of the gamma-aminobutyric acid effect.
    Dalkara T
    Brain Res; 1986 Feb; 366(1-2):314-9. PubMed ID: 3008910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gamma-aminobutyric acid (GABA) agonists and GABA uptake inhibitors on pharmacosensitive and pharmacoresistant epileptiform activity in vitro.
    Pfeiffer M; Draguhn A; Meierkord H; Heinemann U
    Br J Pharmacol; 1996 Oct; 119(3):569-77. PubMed ID: 8894180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in extracellular K+ evoked by GABA, THIP and baclofen in the guinea-pig hippocampal slice.
    Barolet AW; Morris ME
    Exp Brain Res; 1991; 84(3):591-8. PubMed ID: 1650707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of gamma-aminobutyric acid on skate retinal horizontal cells: evidence for an electrogenic uptake mechanism.
    Malchow RP; Ripps H
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8945-9. PubMed ID: 2247470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glial uptake and desensitization on the activity of gamma-aminobutyric acid (GABA) and its analogs at the cat dorsal root ganglion.
    Gallagher JP; Nakamura J; Shinnick-Gallagher P
    J Pharmacol Exp Ther; 1983 Sep; 226(3):876-84. PubMed ID: 6310083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons.
    Roepstorff A; Lambert JD
    J Neurophysiol; 1994 Dec; 72(6):2911-26. PubMed ID: 7897499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory postsynaptic currents of rat substantia nigra pars reticulata neurons: role of GABA receptors and GABA uptake.
    Chan PK; Yung WH
    Brain Res; 1999 Aug; 838(1-2):18-26. PubMed ID: 10446312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex.
    Keros S; Hablitz JJ
    J Neurophysiol; 2005 Sep; 94(3):2073-85. PubMed ID: 15987761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.