These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4084948)

  • 1. The effect of nerve activity on the distribution of synaptic vesicles.
    Maler L; Mathieson WB
    Cell Mol Neurobiol; 1985 Dec; 5(4):373-87. PubMed ID: 4084948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscopic comparison of the terminals of two electrophysiologically distinct types of primary vestibular afferent fibers in the cat.
    Sato F; Sasaki H; Mannen H
    Neurosci Lett; 1988 Jun; 89(1):7-12. PubMed ID: 3261004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for vesicular storage of glutamate in primary afferent terminals.
    Broman J; Adahl F
    Neuroreport; 1994 Sep; 5(14):1801-4. PubMed ID: 7827336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural studies of physiologically identified electrosensory afferent synapses in the gymnotiform fish, Eigenmannia.
    Mathieson WB; Heiligenberg W; Maler L
    J Comp Neurol; 1987 Jan; 255(4):526-37. PubMed ID: 3819029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor position, not nerve branch, determines electroreceptor somatotopy in the gymnotiform fish (Apteronotus leptorhynchus).
    Lannoo MJ; Maler L; Zakon H
    Neurosci Lett; 1989 Feb; 97(1-2):11-7. PubMed ID: 2918992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ultrastructure of afferent nerve endings in the avian lung.
    King AS; McLelland J; Cook RD; King DZ; Walsh C
    Respir Physiol; 1974 Oct; 22(1-2):21-40. PubMed ID: 4438856
    [No Abstract]   [Full Text] [Related]  

  • 11. [Miniature potentials of abnormal amplitude obtained in experimental conditions and concomitant changes in presynaptic structure].
    Pécot-Dechavassine M; Couteaux R
    C R Acad Hebd Seances Acad Sci D; 1972 Aug; 275(9):983-6. PubMed ID: 4630631
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron microscopic study of mossy fiber endings in the hippocampal formation of rats after picrotoxin administration.
    Watanabe H; Hochi T; Mizukawa K; Otsuka N
    Neurosci Res; 1986 Feb; 3(3):237-41. PubMed ID: 3703382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area.
    Bell CC; Russell CJ
    J Comp Neurol; 1978 Dec; 182(3):367-82. PubMed ID: 721966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction.
    Garcia-Segura LM; Muller D; Dunant Y
    Neuroscience; 1986 Sep; 19(1):63-79. PubMed ID: 3024064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei.
    Bae YC; Ihn HJ; Park MJ; Ottersen OP; Moritani M; Yoshida A; Shigenaga Y
    J Comp Neurol; 2000 Mar; 418(3):299-309. PubMed ID: 10701828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory nerve endings in the hard palate and papilla incisiva of the goat.
    Halata Z; Cooper BY; Baumann KI; Schwegmann C; Friedman RM
    Exp Brain Res; 1999 Nov; 129(2):218-28. PubMed ID: 10591896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending.
    Bewick GS; Reid B; Richardson C; Banks RW
    J Physiol; 2005 Jan; 562(Pt 2):381-94. PubMed ID: 15528245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic vesicle pools at diaphragm neuromuscular junctions vary with motoneuron soma, not axon terminal, inactivity.
    Mantilla CB; Rowley KL; Zhan WZ; Fahim MA; Sieck GC
    Neuroscience; 2007 Apr; 146(1):178-89. PubMed ID: 17346898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
    Colasante C; Meunier FA; Kreger AS; Molgó J
    Eur J Neurosci; 1996 Oct; 8(10):2149-56. PubMed ID: 8921306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae).
    McNamara AM; Denizot JP; Hopkins CD
    Brain Behav Evol; 2005; 65(3):188-201. PubMed ID: 15703473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.