These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Climbing fiber destruction affects dendrite and spine membrane organization in Purkinje cells. Garcia-Segura LM; Perrelet A Brain Res; 1982 Mar; 236(2):253-60. PubMed ID: 7066687 [TBL] [Abstract][Full Text] [Related]
3. Colchicine injection in the inferior olivary nucleus increases the number of Purkinje cell dendritic spines. Baetens D; Tribollet E; Garcia-Segura LM Neurosci Lett; 1983 Aug; 38(3):239-44. PubMed ID: 6195556 [TBL] [Abstract][Full Text] [Related]
4. Effects of climbing fiber destruction on large dendrite spines of Purkinje cells. Baetens D; Garcia-Segura LM; Perrelet A Exp Brain Res; 1982; 48(2):256-62. PubMed ID: 7173361 [TBL] [Abstract][Full Text] [Related]
5. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells. Rossi F; van der Want JJ; Wiklund L; Strata P J Comp Neurol; 1991 Jun; 308(4):536-54. PubMed ID: 1865016 [TBL] [Abstract][Full Text] [Related]
6. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Rossi F; Borsello T; Vaudano E; Strata P Neuroscience; 1993 Apr; 53(3):759-78. PubMed ID: 8487954 [TBL] [Abstract][Full Text] [Related]
7. A comparison of the effects of climbing fiber deafferentation in adult and weanling rats. Anderson WA; Flumerfelt BA Brain Res; 1986 Sep; 383(1-2):228-44. PubMed ID: 3768690 [TBL] [Abstract][Full Text] [Related]
8. Development of the rodent cerebellum and synaptic re-formation of donor climbing terminals on spines of the host Purkinje dendrites after chemical deafferentation. Kawamura K; Murase S; Yuasa S J Exp Biol; 1990 Oct; 153():289-303. PubMed ID: 2280226 [TBL] [Abstract][Full Text] [Related]
9. Harmaline-induced changes in plasma membrane of Purkinje cells: a trans-synaptic effect mediated by climbing fibers. Garcia-Segura LM Brain Res; 1986 May; 372(2):390-3. PubMed ID: 3708368 [TBL] [Abstract][Full Text] [Related]
10. Postsynaptic membrane domains in the molecular layer of the cerebellum: a correlation between presynaptic inputs and postsynaptic plasma membrane organization. Garcia-Segura LM; Perrelet A Brain Res; 1984 Nov; 321(2):255-66. PubMed ID: 6541959 [TBL] [Abstract][Full Text] [Related]
11. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. Rossi F; Wiklund L; van der Want JJ; Strata P J Comp Neurol; 1991 Jun; 308(4):513-35. PubMed ID: 1865015 [TBL] [Abstract][Full Text] [Related]
12. Cerebellar output regulation by the climbing and mossy fibers with and without the inferior olive. Bardin JM; Batini C; Billard JM; Buisseret-Delmas C; Conrath-Verrier M; Corvaja N J Comp Neurol; 1983 Feb; 213(4):464-77. PubMed ID: 6300201 [TBL] [Abstract][Full Text] [Related]
13. Histological and Molecular Characterization of the Inferior Olivary Nucleus and Climbing Fibers in the Goldfish, Ikenaga T; Morita S; Finger TE Zoolog Sci; 2023 Apr; 40(2):141-150. PubMed ID: 37042693 [TBL] [Abstract][Full Text] [Related]
14. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex. Castejón OJ J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890 [TBL] [Abstract][Full Text] [Related]
15. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer. Castejón OJ J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096 [TBL] [Abstract][Full Text] [Related]
16. Transplantation of embryonic olive in the climbing-fiber-deprived adult rat cerebellum: synaptogenesis on host Purkinje dendritic spines by donor climbing fibers. Kawamura K; Murase S; Yuasa S; Yoshida K Neurosci Res Suppl; 1990; 13():S61-4. PubMed ID: 2259488 [TBL] [Abstract][Full Text] [Related]
17. Development of olivocerebellar fibers in the clawed toad, Xenopus laevis: a light and electron microscopical HRP study. van der Linden JA; ten Donkelaar HJ; De Boer-van Huizen R J Comp Neurol; 1990 Mar; 293(2):236-52. PubMed ID: 19189714 [TBL] [Abstract][Full Text] [Related]
18. Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum. Cesa R; Morando L; Strata P Eur J Neurosci; 2005 Aug; 22(3):579-86. PubMed ID: 16101739 [TBL] [Abstract][Full Text] [Related]
19. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Andjus PR; Zhu L; Cesa R; Carulli D; Strata P Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018 [TBL] [Abstract][Full Text] [Related]
20. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. Mason CA; Christakos S; Catalano SM J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]