BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4085596)

  • 1. Trans-synaptic modulation of Purkinje cell plasma membrane organization by climbing fiber axonal flow.
    Garcia-Segura LM
    Exp Brain Res; 1985; 61(1):186-93. PubMed ID: 4085596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climbing fiber destruction affects dendrite and spine membrane organization in Purkinje cells.
    Garcia-Segura LM; Perrelet A
    Brain Res; 1982 Mar; 236(2):253-60. PubMed ID: 7066687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colchicine injection in the inferior olivary nucleus increases the number of Purkinje cell dendritic spines.
    Baetens D; Tribollet E; Garcia-Segura LM
    Neurosci Lett; 1983 Aug; 38(3):239-44. PubMed ID: 6195556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of climbing fiber destruction on large dendrite spines of Purkinje cells.
    Baetens D; Garcia-Segura LM; Perrelet A
    Exp Brain Res; 1982; 48(2):256-62. PubMed ID: 7173361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II. Synaptic organization on reinnervated Purkinje cells.
    Rossi F; van der Want JJ; Wiklund L; Strata P
    J Comp Neurol; 1991 Jun; 308(4):536-54. PubMed ID: 1865016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat.
    Rossi F; Borsello T; Vaudano E; Strata P
    Neuroscience; 1993 Apr; 53(3):759-78. PubMed ID: 8487954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the effects of climbing fiber deafferentation in adult and weanling rats.
    Anderson WA; Flumerfelt BA
    Brain Res; 1986 Sep; 383(1-2):228-44. PubMed ID: 3768690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the rodent cerebellum and synaptic re-formation of donor climbing terminals on spines of the host Purkinje dendrites after chemical deafferentation.
    Kawamura K; Murase S; Yuasa S
    J Exp Biol; 1990 Oct; 153():289-303. PubMed ID: 2280226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmaline-induced changes in plasma membrane of Purkinje cells: a trans-synaptic effect mediated by climbing fibers.
    Garcia-Segura LM
    Brain Res; 1986 May; 372(2):390-3. PubMed ID: 3708368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postsynaptic membrane domains in the molecular layer of the cerebellum: a correlation between presynaptic inputs and postsynaptic plasma membrane organization.
    Garcia-Segura LM; Perrelet A
    Brain Res; 1984 Nov; 321(2):255-66. PubMed ID: 6541959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses.
    Rossi F; Wiklund L; van der Want JJ; Strata P
    J Comp Neurol; 1991 Jun; 308(4):513-35. PubMed ID: 1865015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar output regulation by the climbing and mossy fibers with and without the inferior olive.
    Bardin JM; Batini C; Billard JM; Buisseret-Delmas C; Conrath-Verrier M; Corvaja N
    J Comp Neurol; 1983 Feb; 213(4):464-77. PubMed ID: 6300201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological and Molecular Characterization of the Inferior Olivary Nucleus and Climbing Fibers in the Goldfish,
    Ikenaga T; Morita S; Finger TE
    Zoolog Sci; 2023 Apr; 40(2):141-150. PubMed ID: 37042693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of embryonic olive in the climbing-fiber-deprived adult rat cerebellum: synaptogenesis on host Purkinje dendritic spines by donor climbing fibers.
    Kawamura K; Murase S; Yuasa S; Yoshida K
    Neurosci Res Suppl; 1990; 13():S61-4. PubMed ID: 2259488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of olivocerebellar fibers in the clawed toad, Xenopus laevis: a light and electron microscopical HRP study.
    van der Linden JA; ten Donkelaar HJ; De Boer-van Huizen R
    J Comp Neurol; 1990 Mar; 293(2):236-52. PubMed ID: 19189714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purkinje cell spinogenesis during architectural rewiring in the mature cerebellum.
    Cesa R; Morando L; Strata P
    Eur J Neurosci; 2005 Aug; 22(3):579-86. PubMed ID: 16101739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA; Christakos S; Catalano SM
    J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.