BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4086380)

  • 1. A model for signal transmission in an ear having hair cells with free-standing stereocilia. I. Empirical basis for model structure.
    Weiss TF; Peake WT; Rosowski JJ
    Hear Res; 1985; 20(2):131-8. PubMed ID: 4086380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage.
    Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF
    Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():241-60. PubMed ID: 6663500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):175-95. PubMed ID: 4086382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound analysis by the ear.
    Roberts LH
    J Med Eng Technol; 1980 Jul; 4(4):171-9. PubMed ID: 7411580
    [No Abstract]   [Full Text] [Related]  

  • 8. Receptor potentials of lizard hair cells with free-standing stereocilia: responses to acoustic clicks.
    Baden-Kristensen K; Weiss TF
    J Physiol; 1983 Feb; 335():699-721. PubMed ID: 6875897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory stereocilia in the alligator lizard.
    Mulroy MJ; Williams RS
    Hear Res; 1987; 25(1):11-21. PubMed ID: 3804856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural tuning in the granite spiny lizard.
    Turner RG
    Hear Res; 1987; 26(3):287-99. PubMed ID: 3583929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two modes of motion of the alligator lizard cochlea: measurements and model predictions.
    Aranyosi AJ; Freeman DM
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1585-92. PubMed ID: 16240819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of cochlear mechanics.
    Zwislocki JJ
    Hear Res; 1986; 22():155-69. PubMed ID: 3733537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range.
    Shatz LF
    Hear Res; 2004 Sep; 195(1-2):41-53. PubMed ID: 15350278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model of cochlear micromechanics in the mammal and lizard.
    Turner RG; Nielsen DW
    Audiology; 1983; 22(6):545-59. PubMed ID: 6667175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inner hair cell responses to the velocity of basilar membrane motion in the guinea pig.
    Nuttall AL; Brown MC; Masta RI; Lawrence M
    Brain Res; 1981 Apr; 211(1):171-4. PubMed ID: 7225832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.