These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 4087159)
1. The temperature profiles of growth, thermal death and ethanol tolerance of the xylose-fermenting yeast Candida shehatae. Lucas C; Van Uden N J Basic Microbiol; 1985; 25(8):547-50. PubMed ID: 4087159 [TBL] [Abstract][Full Text] [Related]
2. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Yuvadetkun P; Leksawasdi N; Boonmee M Prep Biochem Biotechnol; 2017 Mar; 47(3):268-275. PubMed ID: 27552485 [TBL] [Abstract][Full Text] [Related]
3. [Transcript profile of converting xylose and glucose to ethanol by Candida shehatae]. Xiong X; Cai P; Xu Y; Yong Q; Yu S Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):339-45. PubMed ID: 23858708 [TBL] [Abstract][Full Text] [Related]
4. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS; Lachke AH Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527 [TBL] [Abstract][Full Text] [Related]
5. Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose. Guan D; Li Y; Shiroma R; Ike M; Tokuyasu K Bioresour Technol; 2013 Mar; 132():419-22. PubMed ID: 23280092 [TBL] [Abstract][Full Text] [Related]
6. Oxygen starvation induces cell death in Candida shehatae fermentations of D-xylose, but not D-glucose. Kastner JR; Jones WJ; Roberts RS Appl Microbiol Biotechnol; 1999 Jun; 51(6):780-5. PubMed ID: 10422225 [TBL] [Abstract][Full Text] [Related]
7. The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae. Sánchez S; Bravo V; Castro E; Moya AJ; Camacho F Enzyme Microb Technol; 1997 Oct; 21(5):355-60. PubMed ID: 9322374 [TBL] [Abstract][Full Text] [Related]
8. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae. Palnitkar S; Lachke A Can J Microbiol; 1992 Mar; 38(3):258-60. PubMed ID: 1393828 [TBL] [Abstract][Full Text] [Related]
9. [Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01]. Ge J; Liu G; Yang X; Sun H; Ling H; Ping W Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):404-11. PubMed ID: 21650021 [TBL] [Abstract][Full Text] [Related]
10. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Li Y; Park JY; Shiroma R; Ike M; Tokuyasu K Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261 [TBL] [Abstract][Full Text] [Related]
11. Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the D-xylose fermenting yeasts Candida shehatae and Pichia stipitis. Gupthar AS Can J Microbiol; 1992 Dec; 38(12):1233-7. PubMed ID: 1288841 [TBL] [Abstract][Full Text] [Related]
12. Metabolic flux analysis model for optimizing xylose conversion into ethanol by the natural C5-fermenting yeast Candida shehatae. Bideaux C; Montheard J; Cameleyre X; Molina-Jouve C; Alfenore S Appl Microbiol Biotechnol; 2016 Feb; 100(3):1489-1499. PubMed ID: 26536879 [TBL] [Abstract][Full Text] [Related]
13. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Kumari R; Pramanik K J Biosci Bioeng; 2012 Dec; 114(6):622-9. PubMed ID: 22867797 [TBL] [Abstract][Full Text] [Related]
14. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae. Lebeau T; Jouenne T; Junter GA Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480 [TBL] [Abstract][Full Text] [Related]
15. Continuous alcoholic fermentation of glucose/xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Lebeau T; Jouenne T; Junter GA Appl Microbiol Biotechnol; 1998 Sep; 50(3):309-13. PubMed ID: 9802215 [TBL] [Abstract][Full Text] [Related]
16. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Hahn-Hägerdal B; Lindén T; Senac T; Skoog K Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360 [TBL] [Abstract][Full Text] [Related]
17. Candida shehatae--genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Kurtzman CP Antonie Van Leeuwenhoek; 1990 May; 57(4):215-22. PubMed ID: 2353807 [TBL] [Abstract][Full Text] [Related]
18. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Tanimura A; Nakamura T; Watanabe I; Ogawa J; Shima J Springerplus; 2012; 1():27. PubMed ID: 23961357 [TBL] [Abstract][Full Text] [Related]
19. Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Converti A; Domínguez JM Biotechnol Bioeng; 2001 Oct; 75(1):39-45. PubMed ID: 11536125 [TBL] [Abstract][Full Text] [Related]