These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4087198)

  • 1. Dissolution of carboxylic acids. III: The effect of polyionizable buffers.
    Aunins JG; Southard MZ; Myers RA; Himmelstein KJ; Stella VJ
    J Pharm Sci; 1985 Dec; 74(12):1305-16. PubMed ID: 4087198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions.
    Mooney KG; Mintun MA; Himmelstein KJ; Stella VJ
    J Pharm Sci; 1981 Jan; 70(1):13-22. PubMed ID: 7229925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution kinetics of carboxylic acids II: effect of buffers.
    Mooney KG; Mintun MA; Himmelstein KJ; Stella VJ
    J Pharm Sci; 1981 Jan; 70(1):22-32. PubMed ID: 7229926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: Salicylic acid, theophylline, and benzoic acid.
    Serajuddin AT; Jarowski CI
    J Pharm Sci; 1985 Feb; 74(2):148-54. PubMed ID: 3989683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution of acidic and basic compounds from the rotating disk: influence of convective diffusion and reaction.
    McNamara DP; Amidon GL
    J Pharm Sci; 1986 Sep; 75(9):858-68. PubMed ID: 3783452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acid type on kinetics and mechanism of dental enamel demineralization.
    Patel MV; Fox JL; Higuchi WI
    J Dent Res; 1987 Sep; 66(9):1425-30. PubMed ID: 3040833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo predictive dissolution: transport analysis of the CO2 , bicarbonate in vivo buffer system.
    Krieg BJ; Taghavi SM; Amidon GL; Amidon GE
    J Pharm Sci; 2014 Nov; 103(11):3473-3490. PubMed ID: 25212721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of ionizable drugs into unbuffered solution: a comprehensive model for mass transport and reaction in the rotating disk geometry.
    Southard MZ; Green DW; Stella VJ; Himmelstein KJ
    Pharm Res; 1992 Jan; 9(1):58-69. PubMed ID: 1589411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution of weak acids under laminar flow and rotating disk hydrodynamic conditions: application of a comprehensive convection-diffusion-migration-reaction transport model.
    Neervannan S; Southard MZ; Stella VJ
    J Pharm Sci; 2012 Sep; 101(9):3180-9. PubMed ID: 22623113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.
    Krieg BJ; Taghavi SM; Amidon GL; Amidon GE
    J Pharm Sci; 2015 Sep; 104(9):2894-904. PubMed ID: 25980464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction plane approach for estimating the effects of buffers on the dissolution rate of acidic drugs.
    McNamara DP; Amidon GL
    J Pharm Sci; 1988 Jun; 77(6):511-7. PubMed ID: 3171931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs.
    McNamara DP; Whitney KM; Goss SL
    Pharm Res; 2003 Oct; 20(10):1641-6. PubMed ID: 14620520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers.
    Sheng JJ; McNamara DP; Amidon GL
    Mol Pharm; 2009; 6(1):29-39. PubMed ID: 19183104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?
    Cristofoletti R; Dressman JB
    Eur J Pharm Biopharm; 2016 Jun; 103():104-108. PubMed ID: 27032508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution of ionizable drugs in buffered and unbuffered solutions.
    Ozturk SS; Palsson BO; Dressman JB
    Pharm Res; 1988 May; 5(5):272-82. PubMed ID: 3244637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: relevance to controlled intestinal drug delivery.
    French DL; Mauger JW
    Pharm Res; 1993 Sep; 10(9):1285-90. PubMed ID: 8234164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH and temperature on the solubility of a surface active carboxylic acid.
    Pandit NK; Strykowski JM
    J Pharm Sci; 1989 Sep; 78(9):767-70. PubMed ID: 2585273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type.
    Shellis RP; Barbour ME; Jesani A; Lussi A
    Caries Res; 2013; 47(6):601-11. PubMed ID: 24061229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of ionizable solutes across planar lipid bilayer membranes: boundary-layer pH gradients and the effect of buffers.
    Xiang TX; Anderson BD
    Pharm Res; 1993 Nov; 10(11):1654-61. PubMed ID: 8290481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.