These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 408858)

  • 21. [Experimental observations and physiopathological considerations on some unusual aspects of dysleptic attacks caused by haloperidol].
    Reitano S; Mase' G
    Rass Neuropsichiatr; 1966; 20(4):589-605. PubMed ID: 6003923
    [No Abstract]   [Full Text] [Related]  

  • 22. Reversal of haloperidol-induced extrapyramidal side effects in cebus monkeys by 8-hydroxy-2-(di-n-propylamino)tetralin and its enantiomers.
    Christoffersen CL; Meltzer LT
    Neuropsychopharmacology; 1998 May; 18(5):399-402. PubMed ID: 9536454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cannabinoid CB1 receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys.
    Madsen MV; Peacock LP; Werge T; Andersen MB; Andreasen JT
    Neuropharmacology; 2011; 60(2-3):418-22. PubMed ID: 21029743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine D1 (SCH 23390) and D2 (haloperidol) antagonists in drug-naive monkeys.
    Casey DE
    Psychopharmacology (Berl); 1992; 107(1):18-22. PubMed ID: 1534177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluphenazine-induced acute and tardive dyskinesias in monkeys.
    Kovacic B; Domino EF
    Psychopharmacology (Berl); 1984; 84(3):310-4. PubMed ID: 6440175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative maturity of cebus and squirrel monkeys at birth and during infancy.
    Elias MF
    Dev Psychobiol; 1977 Nov; 10(6):519-28. PubMed ID: 413756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do squirrel monkeys (Saimiri sciureus) and capuchin monkeys (Cebus apella) predict that looking leads to touching?
    Anderson JR; Kuroshima H; Kuwahata H; Fujita K
    Anim Cogn; 2004 Jul; 7(3):185-92. PubMed ID: 15022054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of D1 (NNC 22-0215) and D2 (haloperidol) antagonists in a chronic double-blind placebo controlled trial in cebus monkeys.
    Casey DE
    Psychopharmacology (Berl); 1995 Oct; 121(3):289-93. PubMed ID: 8584608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys.
    Andersen MB; Fink-Jensen A; Peacock L; Gerlach J; Bymaster F; Lundbaek JA; Werge T
    Neuropsychopharmacology; 2003 Jun; 28(6):1168-75. PubMed ID: 12700711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naturally occurring tuberculosis in a squirrel monkey and a cebus monkey.
    Leathers CW; Hamm TE
    J Am Vet Med Assoc; 1976 Nov; 169(9):909-11. PubMed ID: 824261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dietary fat unsaturation enhances drug metabolism in cebus but not in squirrel monkeys.
    Meydani M; Blumberg JB; Hayes KC
    J Nutr; 1985 May; 115(5):573-8. PubMed ID: 3998859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An animal model to study the molecular basis of tardive dyskinesia.
    Bishnoi M; Boparai RK
    Methods Mol Biol; 2012; 829():193-201. PubMed ID: 22231815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seroquel: behavioral effects in conventional and novel tests for atypical antipsychotic drug.
    Migler BM; Warawa EJ; Malick JB
    Psychopharmacology (Berl); 1993; 112(2-3):299-307. PubMed ID: 7871034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential behavioral effects of sulpiride in the rat and squirrel monkey.
    Liebman J; Neale R; Moen NJ
    Eur J Pharmacol; 1978 Aug; 50(4):377-83. PubMed ID: 100334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. (5-Amino-1,3-dimethyl-1H-pyrazol-4-yl)(2-fluorophenyl)methanones . A series of novel potential antipsychotic agents.
    Wise LD; Butler DE; DeWald HA; Lustgarten D; Coughenour LL; Downs DA; Heffner TG; Pugsley TA
    J Med Chem; 1986 Sep; 29(9):1628-37. PubMed ID: 2875184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroleptic-induced acute dyskinesias in squirrel monkeys: correlation with propensity to cause extrapyramidal side effects.
    Liebman J; Neale R
    Psychopharmacology (Berl); 1980; 68(1):25-9. PubMed ID: 6104837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study of neonatal skeletal development in Cebus and other primates.
    Watts ES
    Folia Primatol (Basel); 1990; 54(3-4):217-24. PubMed ID: 2391051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA evidence on the phylogenetic systematics of New World monkeys: support for the sister-grouping of Cebus and Saimiri from two unlinked nuclear genes.
    Harada ML; Schneider H; Schneider MP; Sampaio I; Czelusniak J; Goodman M
    Mol Phylogenet Evol; 1995 Sep; 4(3):331-49. PubMed ID: 8845968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys.
    Andersen MB; Fuxe K; Werge T; Gerlach J
    Behav Pharmacol; 2002 Dec; 13(8):639-44. PubMed ID: 12478214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition by memantine of the development of persistent oral dyskinesias induced by long-term haloperidol treatment of rats.
    Andreassen OA; Aamo TO; Jøorgensen HA
    Br J Pharmacol; 1996 Oct; 119(4):751-7. PubMed ID: 8904651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.