These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4088838)

  • 1. A mathematical model of amphibian skin epithelium with two types of transporting cellular units.
    Larsen EH; Rasmussen BE
    Pflugers Arch; 1985; 405 Suppl 1():S50-8. PubMed ID: 4088838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride transport in amphibian skin: a review.
    Lacaz-Vieira F; Procopio J
    Braz J Med Biol Res; 1988; 21(6):1119-28. PubMed ID: 3074837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways for chloride and sodium transport across toad skin.
    Bruus K; Kristensen P; Larsen EH
    Acta Physiol Scand; 1976 Mar; 97(1):31-47. PubMed ID: 1274636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential plays a dual role for chloride transport across toad skin.
    Larsen EH; Rasmussen BE
    Biochim Biophys Acta; 1983 Mar; 728(3):455-9. PubMed ID: 6402013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical model of ionic movements in airway epithelial cells.
    Duszyk M; French AS
    J Theor Biol; 1991 Jul; 151(2):231-47. PubMed ID: 1719301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.
    Fuchs W; Larsen EH; Lindemann B
    J Physiol; 1977 May; 267(1):137-66. PubMed ID: 301566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transepithelial chloride conductance in amphibian skin: regulatory mechanisms and localization.
    Nagel W; Davis JM; Katz U
    Pflugers Arch; 2000 Oct; 440(6):797-808. PubMed ID: 11041544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active transport and exchange diffusion of Cl across the isolated skin of Rana pipiens.
    Drewnowska K; Biber TU
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F424-31. PubMed ID: 3876034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways of ion movement in the canine tracheal epithelium.
    Welsh MJ; Widdicombe JH
    Am J Physiol; 1980 Sep; 239(3):F215-21. PubMed ID: 7435560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium.
    Reuss L; Reinach P; Weinman SA; Grady TP
    Am J Physiol; 1983 May; 244(5):C336-47. PubMed ID: 6601915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride channels in toad skin.
    Larsen EH; Rasmussen BE
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):413-34. PubMed ID: 6130539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular activities of chloride, potassium and sodium ions in rabbit corneal epithelium.
    Festen CM; Slegers JF; Van Os CH
    Biochim Biophys Acta; 1983 Jul; 732(2):394-404. PubMed ID: 6307370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-K-Cl cotransport in chloride-transporting epithelia.
    Epstein FH; Silva P
    Ann N Y Acad Sci; 1985; 456():187-97. PubMed ID: 2418726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of membrane potential equations to tight epithelia.
    Gordon LG; Macknight AD
    J Membr Biol; 1991 Mar; 120(2):155-63. PubMed ID: 2072386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeability properties and intracellular ion concentrations of epithelial cells in rat duodenum.
    Okada Y; Irimajiri A; Inouye A
    Biochim Biophys Acta; 1976 Jun; 436(1):15-24. PubMed ID: 1276210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume regulation and basolateral co-transport of sodium, potassium, and chloride ions in frog skin epithelium.
    Ussing HH
    Pflugers Arch; 1985; 405 Suppl 1():S2-7. PubMed ID: 3878961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state analysis of ion fluxes in Necturus gall-bladder epithelial cells.
    Hill AE; Hill BS
    J Physiol; 1987 Jan; 382():15-34. PubMed ID: 2442358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network thermodynamic modeling of hormone regulation of active Na+ transport in cultured renal epithelium (A6).
    Fidelman ML; Mikulecky DC
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C978-91. PubMed ID: 2424318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of epithelial electrolyte transport by marker ions.
    Dörge A; Rick R
    Scanning Microsc; 1990 Jun; 4(2):449-53; discussion 453-5. PubMed ID: 2402613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.