These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 408944)

  • 41. Activation of carbon tetrachloride, and distribution of NADPH-cytochrome c reductase, cytochrome P-450, and other microsomal enzyme activities in rat tissues.
    Benedetto C; Dianzani MU; Ahmed M; Cheeseman K; Connelly C; Slater TF
    Biochim Biophys Acta; 1981 Nov; 677(3-4):363-72. PubMed ID: 6794650
    [No Abstract]   [Full Text] [Related]  

  • 42. Characteristcs of microsomal enzyme controls in primary cultures of rat hepatocytes.
    Fahl WE; Michalopoulos G; Sattler GL; Jefcoate CR; Pitot HC
    Arch Biochem Biophys; 1979 Jan; 192(1):61-72. PubMed ID: 107860
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of zinc sulphate on carbon tetrachloride hepatotoxicity.
    Srinivasan S; Balwani JH
    Acta Pharmacol Toxicol (Copenh); 1969; 27(6):424-8. PubMed ID: 5395731
    [No Abstract]   [Full Text] [Related]  

  • 44. Effect of praseodymium chloride on liver microsomal enzymes of rats.
    Oga S; Galvão JF; Yasaka WJ; Araujo Filho AP
    Life Sci; 1986 Jun; 38(22):2029-36. PubMed ID: 3086648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of cycloheximide and actinomycin D on carbon tetrachloride hepatotoxicity.
    Lindstrom TD; Anders MW
    Toxicol Appl Pharmacol; 1977 Oct; 42(1):167-73. PubMed ID: 929600
    [No Abstract]   [Full Text] [Related]  

  • 46. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride.
    Yamazoe Y; Sugiura M; Kamataki T; Kato R
    Jpn J Pharmacol; 1979 Oct; 29(5):715-21. PubMed ID: 43918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of rifampicin on the mouse hepatic mixed-function oxidase system.
    Tredger JM; Smith HM; Powell-Jackson PR; Davis M; Williams R
    Biochem Pharmacol; 1981 May; 30(10):1043-51. PubMed ID: 6789832
    [No Abstract]   [Full Text] [Related]  

  • 48. Potentiation of CCl4-induced hepatotoxicity in the dog by chronic exposure to phenobarbital.
    Litterst CL; Farber TM; Van Loon EJ
    Toxicol Appl Pharmacol; 1973 Jul; 25(3):354-62. PubMed ID: 4728068
    [No Abstract]   [Full Text] [Related]  

  • 49. Evidence for a predominantly NADH-dependent O-dealkylating system in rat hepatic microsomes.
    Kuwahara S; Mannering GJ
    Biochem Pharmacol; 1985 Dec; 34(24):4215-28. PubMed ID: 3935115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The stimulation of lipid peroxidation produced by dimethylnitrosamine in rat liver microsomes in vitro: the effects of promethazine and inhibitors of drug metabolism, and a comparison with previous studies using carbon tetrachloride.
    Jose PJ; Slater TF
    Xenobiotica; 1973 Jun; 3(6):357-66. PubMed ID: 4148105
    [No Abstract]   [Full Text] [Related]  

  • 51. Effects of medroxyprogesterone acetate on hepatic glucose metabolism and microsomal enzyme activity in rats with normal and altered liver.
    Stengård JH; Saarni HU; Sotaniemi EA
    Pharmacology; 1984; 28(1):34-41. PubMed ID: 6322213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

  • 53. The effect of experimental local inflammation on the action of barbiturates in rat.
    Prabhu VG; Rise NL; Oester YT
    Arch Int Pharmacodyn Ther; 1972 Feb; 195(2):343-50. PubMed ID: 5015939
    [No Abstract]   [Full Text] [Related]  

  • 54. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity.
    Lee KJ; Woo ER; Choi CY; Shin DW; Lee DG; You HJ; Jeong HG
    Life Sci; 2004 Jan; 74(8):1051-64. PubMed ID: 14672760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes.
    Kamataki T; Sugiura M; Yamazoe Y; Kato R
    Biochem Pharmacol; 1979 Jul; 28(13):1993-2000. PubMed ID: 113009
    [No Abstract]   [Full Text] [Related]  

  • 56. Effect of dietary antioxidants and phenobarbital pretreatment on microsomal lipid peroxidation and activation by carbon tetrachloride.
    Taylor SL; Tappel AL
    Life Sci; 1976 Oct; 19(8):1151-60. PubMed ID: 11382
    [No Abstract]   [Full Text] [Related]  

  • 57. Mechanism of dimethylnitrosamine and carbon tetrachloride-induced liver necrosis: similarities and differences.
    D'Acosta N; Castro JA; de Castro CR; Díaz Gómez MI; de Ferreyra EC; de Fenos OM
    Toxicol Appl Pharmacol; 1975 Jun; 32(3):474-81. PubMed ID: 1154408
    [No Abstract]   [Full Text] [Related]  

  • 58. Carbon tetrachloride activation, lipid peroxidation, and the mixed function oxygenase activity of various rat tissues.
    Villarruel MD; de Toranzo EG; Castro JA
    Toxicol Appl Pharmacol; 1977 Aug; 41(2):337-44. PubMed ID: 408943
    [No Abstract]   [Full Text] [Related]  

  • 59. Formation of electrophilic chlorine from carbon tetrachloride--involvement of cytochrome P-450.
    Mico BA; Branchflower RV; Pohl LR
    Biochem Pharmacol; 1983 Aug; 32(15):2357-9. PubMed ID: 6411097
    [No Abstract]   [Full Text] [Related]  

  • 60. The protective effect of tinoridine against carbon tetrachloride hepatotoxicity.
    Yasuda H; Izumi N; Shimada O; Kobayakawa T; Nakanishi M
    Toxicol Appl Pharmacol; 1980 Mar; 52(3):407-13. PubMed ID: 6892737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.