These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4089652)

  • 1. Cyclic axial loading of spinal implants.
    Nasca RJ; Hollis JM; Lemons JE; Cool TA
    Spine (Phila Pa 1976); 1985 Nov; 10(9):792-8. PubMed ID: 4089652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiaxis cyclic biomechanical testing of Harrington, Luque, and Drummond implants.
    Nasca RJ; Lemons JE; Walker J; Batson S
    Spine (Phila Pa 1976); 1990 Jan; 15(1):15-20. PubMed ID: 2326694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical analysis of spinal instrumentation systems in thoracolumbar fractures. Comparison of traditional Harrington distraction instrumentation with segmental spinal instrumentation.
    McAfee PC; Werner FW; Glisson RR
    Spine (Phila Pa 1976); 1985 Apr; 10(3):204-17. PubMed ID: 3992339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model.
    Gurr KR; McAfee PC; Shih CM
    J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory testing of segmental spinal instrumentation versus traditional Harrington instrumentation for scoliosis treatment.
    Wenger DR; Carollo JJ; Wilkerson JA; Wauters K; Herring JA
    Spine (Phila Pa 1976); 1982; 7(3):265-9. PubMed ID: 7112240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative biomechanical study of spinal fixation using Cotrel-Dubousset instrumentation.
    Farcy JP; Weidenbaum M; Michelsen CB; Hoeltzel DA; Athanasiou KA
    Spine (Phila Pa 1976); 1987 Nov; 12(9):877-81. PubMed ID: 3441834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system.
    Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR
    J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of spinal fixation devices: II. Stability provided by eight internal fixation devices.
    Panjabi MM; Abumi K; Duranceau J; Crisco JJ
    Spine (Phila Pa 1976); 1988 Oct; 13(10):1135-40. PubMed ID: 3206271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of lumbosacral fixation devices.
    Ogilvie JW; Schendel M
    Clin Orthop Relat Res; 1986 Feb; (203):120-5. PubMed ID: 3955973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the failure biomechanics of spinal fixation devices.
    Maiman DJ; Sances A; Larson SJ; Myklebust JB; Chilbert MA; Nesemann SP; Flatley TJ
    Neurosurgery; 1985 Oct; 17(4):574-80. PubMed ID: 4058692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical investigation of dual growing rods used for fusionless scoliosis correction.
    Quick ME; Grant CA; Adam CJ; Askin GN; Labrom RD; Pearcy MJ
    Clin Biomech (Bristol, Avon); 2015 Jan; 30(1):33-9. PubMed ID: 25487998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model.
    Gurr KR; McAfee PC; Shih CM
    J Bone Joint Surg Am; 1988 Jun; 70(5):680-91. PubMed ID: 3392061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental spinal instrumentation.
    Nasca RJ
    South Med J; 1985 Mar; 78(3):303-9. PubMed ID: 3975745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of posterior cervical fixation.
    Mihara H; Cheng BC; David SM; Ohnari K; Zdeblick TA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1662-7. PubMed ID: 11474352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of corrosion in Harrington and Luque rods failure.
    Prikryl M; Srivastava SC; Viviani GR; Ives MB; Purdy GR
    Biomaterials; 1989 Mar; 10(2):109-17. PubMed ID: 2706297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical assessment of conventional unit rod fixation versus a unit rod pedicle screw construct: a human cadaver study.
    Erickson MA; Oliver T; Baldini T; Bach J
    Spine (Phila Pa 1976); 2004 Jun; 29(12):1314-9. PubMed ID: 15187631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twelfth thoracic-first lumbar vertebral mechanical stability of fractures after Harrington-rod instrumentation.
    Purcell GA; Markolf KL; Dawson EG
    J Bone Joint Surg Am; 1981 Jan; 63(1):71-8. PubMed ID: 7451528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of methods of posterior stabilization of the spine and posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis. A calf-spine model.
    Shirado O; Zdeblick TA; McAfee PC; Warden KE
    J Bone Joint Surg Am; 1991 Apr; 73(4):518-26. PubMed ID: 2013591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.
    Koller H; Fierlbeck J; Auffarth A; Niederberger A; Stephan D; Hitzl W; Augat P; Zenner J; Blocher M; Blocher M; Resch H; Mayer M
    Spine (Phila Pa 1976); 2014 Mar; 39(6):E390-8. PubMed ID: 24384666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model.
    Wittenberg RH; Shea M; Edwards WT; Swartz DE; White AA; Hayes WC
    Spine (Phila Pa 1976); 1992 Jun; 17(6 Suppl):S121-8. PubMed ID: 1631711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.