These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4089652)

  • 21. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harrington instrumentation with spinous process wiring for idiopathic scoliosis.
    Drummond DS
    Orthop Clin North Am; 1988 Apr; 19(2):281-9. PubMed ID: 3357684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical study of posterior spinal instrumentations for scoliosis.
    Yamagata M
    Nihon Seikeigeka Gakkai Zasshi; 1984 May; 58(5):523-34. PubMed ID: 6470551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of internal fixation device support in experimentally produced fractures of the dorsolumbar spine.
    Pinzur MS; Meyer PR; Lautenschlager EP; Keller JC; Dobozi W; Lewis J
    Orthopedics; 1979 Jan; 2(1):28-34. PubMed ID: 24822472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modular spinal rod linkage system to provide rotational stability.
    Asher M; Carson W; Heinig C; Strippgen W; Arendt M; Lark R; Hartley M
    Spine (Phila Pa 1976); 1988 Mar; 13(3):272-7. PubMed ID: 3388113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertebral end-plate failure in porcine and bovine models of spinal fracture instrumentation.
    Allan DG; Russell GG; Moreau MJ; Raso VJ; Budney D
    J Orthop Res; 1990 Jan; 8(1):154-6. PubMed ID: 2293630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations.
    Ferguson RL; Tencer AF; Woodard P; Allen BL
    Spine (Phila Pa 1976); 1988 May; 13(5):453-60. PubMed ID: 3187690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of kyphosis on the mechanical strength of a long-segment posterior construct using a synthetic model.
    Orchowski J; Polly DW; Klemme WR; Oda I; Cunningham B
    Spine (Phila Pa 1976); 2000 Jul; 25(13):1644-8. PubMed ID: 10870139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of segmental spinal instrumentation devices in the correction of scoliosis.
    Ogilvie JW; Millar EA
    Spine (Phila Pa 1976); 1983; 8(4):416-9. PubMed ID: 6635791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.
    Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE
    Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical evaluation of cervical spinal stabilization methods in a human cadaveric model.
    Coe JD; Warden KE; Sutterlin CE; McAfee PC
    Spine (Phila Pa 1976); 1989 Oct; 14(10):1122-31. PubMed ID: 2588063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation.
    Jacobs E; Roth AK; Arts JJ; van Rhijn LW; Willems PC
    J Mater Sci Mater Med; 2017 Aug; 28(10):148. PubMed ID: 28828753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanical comparison of posterior lumbar interbody fusion cages.
    Rapoff AJ; Ghanayem AJ; Zdeblick TA
    Spine (Phila Pa 1976); 1997 Oct; 22(20):2375-9. PubMed ID: 9355218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical comparison of posterior cervicothoracic instrumentation techniques after one-level laminectomy and facetectomy.
    Eleraky M; Setzer M; Baaj AA; Papanastassiou I; Conrad BP; Vrionis FD
    J Neurosurg Spine; 2010 Nov; 13(5):622-9. PubMed ID: 21039154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear fracture-dislocations of the thoracic and lumbar spine associated with forceful hyperextension (lumberjack paraplegia).
    Denis F; Burkus JK
    Spine (Phila Pa 1976); 1992 Feb; 17(2):156-61. PubMed ID: 1553586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental evaluation of Harrington rod fixation supplemented with sublaminar wires in stabilizing thoracolumbar fracture-dislocations.
    Munson G; Satterlee C; Hammond S; Betten R; Gaines RW
    Clin Orthop Relat Res; 1984 Oct; (189):97-102. PubMed ID: 6478708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.