These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4089862)

  • 1. Development and ciliation of the palate in two frogs, Bombina and Xenopus; a comparative study.
    LeCluyse EL; Frost SK; Dentler WL
    Tissue Cell; 1985; 17(6):853-64. PubMed ID: 4089862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group.
    Jungblut LD; Reiss JO; Paz DA; Pozzi AG
    J Morphol; 2017 Sep; 278(9):1208-1219. PubMed ID: 28503895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis.
    Hansen A; Reiss JO; Gentry CL; Burd GD
    J Comp Neurol; 1998 Aug; 398(2):273-88. PubMed ID: 9700571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetrical microtubule capping structures in frog palate cilia.
    LeCluyse EL; Dentler WL
    J Ultrastruct Res; 1984 Jan; 86(1):75-85. PubMed ID: 6737561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal development in Xenopus laevis (Anura: Pipidae).
    Trueb L; Hanken J
    J Morphol; 1992 Oct; 214(1):1-41. PubMed ID: 1433306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of chemically produced shifts in developmental timing on postmetamorphic morphology in Bombina orientalis.
    Emerson SB
    Exp Biol; 1987; 47(2):105-9. PubMed ID: 3436400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory metamorphosis in the coastal tailed frog Ascaphus truei (Amphibia, Anura, Leiopelmatidae).
    Benzekri NA; Reiss JO
    J Morphol; 2012 Jan; 273(1):68-87. PubMed ID: 21935974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development.
    Ziermann JM; Diogo R
    J Morphol; 2014 Apr; 275(4):398-413. PubMed ID: 24877162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental time of the hemoglobin transition in the anuran Bombina orientalis.
    Cardellini P; Sala M
    Comp Biochem Physiol B; 1983; 75(2):259-62. PubMed ID: 6872517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological integration in the cranium during anuran metamorphosis.
    Hanken J; Summers CH; Hall BK
    Experientia; 1989 Sep; 45(9):872-5. PubMed ID: 2776858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura).
    Park CJ; Kang HS; Gye MC
    Chemosphere; 2010 Nov; 81(10):1292-300. PubMed ID: 20870264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Harderian gland during metamorphosis in anurans.
    Shirama K; Kikuyama S; Takeo Y; Shimizu K; Maekawa K
    Anat Rec; 1982 Mar; 202(3):371-8. PubMed ID: 6803615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis.
    Edwards-Faret G; Cebrián-Silla A; Méndez-Olivos EE; González-Pinto K; García-Verdugo JM; Larraín J
    J Comp Neurol; 2018 Jul; 526(10):1712-1732. PubMed ID: 29603210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental patterns of peroxisomal enzymes in amphibian liver during spontaneous and triiodothyronine-induced metamorphosis.
    Ciolek E; Vamecq J; Van Hoof F; Dauça M; Bautz A
    Comp Biochem Physiol B; 1989; 93(2):477-84. PubMed ID: 2776437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface water mitigates the anti-metamorphic effects of perchlorate in New Mexico spadefoot toads (Spea multiplicata) and African clawed frogs (Xenopus laevis).
    Brausch JM; Wages M; Shannahan RD; Perry G; Anderson TA; Maul JD; Mulhearn B; Smith PN
    Chemosphere; 2010 Jan; 78(3):280-5. PubMed ID: 19913875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrested development in Xenopus laevis tadpoles: how size constrains metamorphosis.
    Rot-Nikcevic I; Wassersug RJ
    J Exp Biol; 2004 May; 207(Pt 12):2133-45. PubMed ID: 15143146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis.
    Dittrich K; Kuttler J; Hassenklöver T; Manzini I
    J Comp Neurol; 2016 Apr; 524(5):986-98. PubMed ID: 26294036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of the frog palate mucociliary epithelium.
    Puchelle E; Petit A; Adnet JJ
    J Submicrosc Cytol; 1984 Apr; 16(2):273-82. PubMed ID: 6609244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans.
    Tamschick S; Rozenblut-Kościsty B; Ogielska M; Kekenj D; Gajewski F; Krüger A; Kloas W; Stöck M
    Environ Pollut; 2016 Sep; 216():282-291. PubMed ID: 27285164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciliary function of the frog oro-pharyngeal epithelium.
    Aiello E; Sleigh M
    Cell Tissue Res; 1977 Mar; 178(2):267-78. PubMed ID: 300283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.