These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 4090345)

  • 1. [Nature of the cellular proliferation of the corneal epithelium of mice in various regimens of exposure to permanent magnetic fields].
    Galaktionova GV
    Vopr Kurortol Fizioter Lech Fiz Kult; 1985; (6):45-8. PubMed ID: 4090345
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of constant magnetic fields of intensities up to 4500 oersted on the mitotic activity of mouse corneal epithelium].
    Galaktionova GV; Strzhizhovskiĭ AD
    Kosm Biol Med; 1973; 7(2):49-51. PubMed ID: 4784795
    [No Abstract]   [Full Text] [Related]  

  • 3. Influence of infralow-frequency magnetic fields of high and ultrahigh intensity on the division of mammalian cells in vivo.
    Strzhizhovskii AD; Galaktionova GV; Chermnykh PA
    Biol Bull Acad Sci USSR; 1979; 6(1):97-100. PubMed ID: 549664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cellular composition of the spermatogenic epithelium in mice during and after exposure to permanent magnetic fields of various durations].
    Strzhizhovskiĭ AD; Mastriukova VM
    Izv Akad Nauk SSSR Biol; 1988; (1):91-7. PubMed ID: 3351103
    [No Abstract]   [Full Text] [Related]  

  • 5. [Sensitivity of mammalian tissues to prolonged exposure to high-tension permanent magnetic fields].
    Galaktionova GV; Mastriukova VM; Strzhizhovskiĭ AD
    Kosm Biol Aviakosm Med; 1985; 19(2):78-81. PubMed ID: 4039390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Modification of the cytogenetic effect of ionizing radiation during exposure to constant magnetic fields].
    Galaktionova GV; Strzhizhovskiĭ AD
    Kosm Biol Aviakosm Med; 1974; 8(6):25-8. PubMed ID: 4437107
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect on mitotic activity of prolonged exposure to constant and alternating 1000 oersted magnetic fields].
    Strzhizhovskiĭ AD; Galaktionova GV
    Kosm Biol Aviakosm Med; 1976; 10(2):63-7. PubMed ID: 1263418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of the helium-neon laser in different irradiation regimens on corneal cells after exposure to ionizing radiation].
    Buliakova NV
    Dokl Akad Nauk SSSR; 1984; 279(2):499-501. PubMed ID: 6525957
    [No Abstract]   [Full Text] [Related]  

  • 9. [Tissue specificity of changes in mitotic activity induced by strong magnetic fields].
    Strzhizhovskiĭ AD; Galaktionova GV; Cheremnykh PA
    Tsitologiia; 1980 Feb; 22(2):205-9. PubMed ID: 7385365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Differing regulation of proliferation of limbus and corneal epithelium caused by serum factors].
    Kruse FE; Tseng SC
    Ophthalmologe; 1993 Dec; 90(6):669-78. PubMed ID: 8124031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells.
    Watanabe K; Nakagawa S; Nishida T
    Invest Ophthalmol Vis Sci; 1987 Feb; 28(2):205-11. PubMed ID: 8591897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Physiologic regeneration of corneal epithelium following exposure to constant magnetic fields of super-high intensity].
    Strzhizhovskiĭ AD; Galaktionova GV
    Tsitologiia; 1976 Mar; 18(3):330-5. PubMed ID: 951753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Retinoic acid inhibits the proliferation of dividing cells in peripheral corneal epithelium].
    Kruse FE; Tseng SC
    Ophthalmologe; 1993 Dec; 90(6):662-8. PubMed ID: 8124030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of high and superhigh intensity infra-low frequency magnetic fields on division of mammalian cells in vivo].
    Strzhizhovskiĭ AD; Galaktionova GV; Cheremnynykh PA
    Izv Akad Nauk SSSR Biol; 1979; (1):124-7. PubMed ID: 762307
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the corneal epithelium. ANL-7635.
    Fry RJ; Weber CL
    ANL Rep; 1969 Dec; ():10-1. PubMed ID: 5310747
    [No Abstract]   [Full Text] [Related]  

  • 16. Gangliosides of migrating and nonmigrating corneal epithelium in organ and cell culture.
    Yang Z; Zhao Z; Panjwani N
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):501-10. PubMed ID: 8595950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transforming growth factors beta 1 and 2 inhibit proliferation of limbus and corneal epithelium].
    Kruse FE; Tseng SC
    Ophthalmologe; 1994 Oct; 91(5):617-23. PubMed ID: 7812093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hepatocyte growth factor, transforming growth factor-beta1 and epidermal growth factor on bovine corneal epithelial cells under epithelial-keratocyte interaction in reconstruction culture.
    Nishimura T; Toda S; Mitsumoto T; Oono S; Sugihara H
    Exp Eye Res; 1998 Jan; 66(1):105-16. PubMed ID: 9533836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of p27(KIP1) degradation by Skp2 in the regulation of proliferation in response to wounding of corneal epithelium.
    Yoshida K; Nakayama K; Nagahama H; Harada T; Harada C; Imaki J; Matsuda A; Yamamoto K; Ito M; Ohno S; Nakayama K
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):364-70. PubMed ID: 11818378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells.
    Hamrah P; Zhang Q; Liu Y; Dana MR
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):639-46. PubMed ID: 11867578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.