BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4091)

  • 1. Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protein structure and a conformational change induced by phosphate binding.
    Hull WE; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1535-46. PubMed ID: 4091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH.
    Hull WE; Halford SE; Gutfreund H; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum.
    Sykes BD; Weingarten HI; Schlesinger MJ
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):469-73. PubMed ID: 4592693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P nuclear magnetic resonance of phosphoenzyme intermediates of alkaline phosphatase.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):408-16. PubMed ID: 6336753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines.
    Hull WE; Sykes BD
    Biochemistry; 1974 Aug; 13(17):3431-7. PubMed ID: 4602295
    [No Abstract]   [Full Text] [Related]  

  • 6. 19-F NMR studies of the binding of a fluorine-labeled phosphonate ion to E. coli alkaline phosphatase.
    Lilja H; Csopak H; Lindman B; Fölsch G
    Biochim Biophys Acta; 1975 Mar; 384(1):277-82. PubMed ID: 236775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(II)-113Cd(II) and Zn(II)-Mg(II) hybrids of alkaline phosphatase. 31P and 113Cd NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Apr; 259(8):4991-7. PubMed ID: 6370997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric interactions between metal ion and phosphate at the active sites of alkaline phosphatase as determined by 31P NMR and 113Cd NMR.
    Chlebowski JF; Armitage IM; Coleman JE
    J Biol Chem; 1977 Oct; 252(20):7053-61. PubMed ID: 20443
    [No Abstract]   [Full Text] [Related]  

  • 9. 31P NMR of phosphate and phosphonate complexes of metalloalkaline phosphatases.
    Chlebowski JF; Armitage IM; Tusa PP; Coleman JE
    J Biol Chem; 1976 Feb; 251(4):1207-16. PubMed ID: 2606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):396-407. PubMed ID: 6336752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase.
    Otvos JD; Armitage IM
    Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 13. Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR.
    Gettins P; Coleman JE
    J Biol Chem; 1984 Sep; 259(17):11036-40. PubMed ID: 6381493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P NMR of alkaline phosphatase. Saturation transfer and metal-phosphorus coupling.
    Otvos JD; Alger JR; Coleman JE; Armitage IM
    J Biol Chem; 1979 Mar; 254(6):1778-80. PubMed ID: 33981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc stoichiometry in Escherichia coli alkaline phosphatase. Studies by 31P NMR and ion-exchange chromatography.
    Bock JL; Kowalsky A
    Biochim Biophys Acta; 1978 Sep; 526(1):135-46. PubMed ID: 28775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal dependence of the phosphate (oxygen)-water exchange reaction of Escherichia coli alkaline phosphatase. Kinetics followed by 31P(18O) NMR.
    Bock JL; Cohn M
    J Biol Chem; 1978 Jun; 253(12):4082-5. PubMed ID: 350868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P NMR of alkaline phosphatase. Dependence of phosphate binding stoichiometry on metal ion content.
    Otvos JD; Armitage IM; Chlebowski JF; Coleman JE
    J Biol Chem; 1979 Jun; 254(11):4707-13. PubMed ID: 374414
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the histidine residues in alkaline phosphatase by carbon-13 nuclear magnetic resonance.
    Otvos JD; Browne DT
    Biochemistry; 1980 Aug; 19(17):4011-21. PubMed ID: 6996713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.