BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 4091540)

  • 1. Enzymes of gluconate metabolism and glycolysis in Penicillium notatum.
    Pitt D; Mosley MJ
    Antonie Van Leeuwenhoek; 1985; 51(4):353-64. PubMed ID: 4091540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.
    Wilkes RA; Mendonca CM; Aristilde L
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants.
    Vicente M; Cánovas JL
    J Bacteriol; 1973 Nov; 116(2):908-14. PubMed ID: 4745434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways of glucose catabolism and the origin and metabolism of pyruvate during calcium-induced conidiation of Penicillium notatum.
    Pitt D; Mosley MJ
    Antonie Van Leeuwenhoek; 1985; 51(4):365-84. PubMed ID: 3911885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida.
    Velázquez F; di Bartolo I; de Lorenzo V
    J Bacteriol; 2004 Dec; 186(24):8267-75. PubMed ID: 15576775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways.
    Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M
    Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways.
    Müller HM
    Zentralbl Mikrobiol; 1985; 140(6):475-84. PubMed ID: 4072456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-KETOGLUCONATE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    GODDARD JL; SOKATCH JR
    J Bacteriol; 1964 Apr; 87(4):844-51. PubMed ID: 14137623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gluconate metabolism of Pasteurellapestis.
    MORTLOCK RP
    J Bacteriol; 1962 Jul; 84(1):53-9. PubMed ID: 14476383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast.
    Corkins ME; Wilson S; Cocuron JC; Alonso AP; Bird AJ
    J Biol Chem; 2017 Aug; 292(33):13823-13832. PubMed ID: 28667014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro reconstitution of non-phosphorylative Entner-Doudoroff pathway for lactate production.
    Okano K; Zhu Q; Honda K
    J Biosci Bioeng; 2020 Mar; 129(3):269-275. PubMed ID: 31594693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux Connections Between Gluconate Pathway, Glycolysis, and Pentose-Phosphate Pathway During Carbohydrate Metabolism in
    Wushensky JA; Youngster T; Mendonca CM; Aristilde L
    Front Microbiol; 2018; 9():2789. PubMed ID: 30524402
    [No Abstract]   [Full Text] [Related]  

  • 14. Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity.
    Lyngstadaas A; Sprenger GA; Boye E
    Biochim Biophys Acta; 1998 Aug; 1381(3):319-30. PubMed ID: 9729441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The unique Entner-Doudoroff (ED) glycolysis pathway of glucose in archaea--a review].
    Liu T; Shen Y; Liu Q; Liu B
    Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1126-31. PubMed ID: 18956766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli.
    Bausch C; Peekhaus N; Utz C; Blais T; Murray E; Lowary T; Conway T
    J Bacteriol; 1998 Jul; 180(14):3704-10. PubMed ID: 9658018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.
    Krajewski V; Simic P; Mouncey NJ; Bringer S; Sahm H; Bott M
    Appl Environ Microbiol; 2010 Jul; 76(13):4369-76. PubMed ID: 20453146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconate catabolism in Rhizobium japonicum.
    Keele BB; Hamilton PB; Elkan GH
    J Bacteriol; 1970 Mar; 101(3):698-704. PubMed ID: 5438044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens.
    EAGON RG; WANG CH
    J Bacteriol; 1962 Apr; 83(4):879-86. PubMed ID: 13888944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1560-72. PubMed ID: 172202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.