These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 4091565)

  • 21. [Glutamine metabolism by rumen microorganisms: effect of monensin].
    Kalachniuk GI; Marounek M; Kalachniuk LH; Savka OG; Herasymiv
    Ukr Biokhim Zh (1978); 1992; 64(4):72-7. PubMed ID: 1360177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation of NADH in a coupled oxidase-peroxidase reaction and its significance for the fermentation in rumen protozoa of the genus Isotricha.
    Prins RA; Prast ER
    J Protozool; 1973 Aug; 20(3):471-7. PubMed ID: 4147241
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle.
    Abrar A; Tsukahara T; Kondo M; Ban-Tokuda T; Chao W; Matsui H
    Anim Sci J; 2015 Sep; 86(9):849-54. PubMed ID: 25782058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of redox potential on metabolism of glucose in mixed cultures of rumen microorganisms.
    Marounek M; Brezina P; Simůnek J; Bartos S
    Arch Tierernahr; 1991 Jan; 41(1):63-9. PubMed ID: 2048969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.
    Chen GJ; Russell JB
    Appl Environ Microbiol; 1988 Nov; 54(11):2742-9. PubMed ID: 2975156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of pH in regulating ruminal methane and ammonia production.
    Lana RP; Russell JB; Van Amburgh ME
    J Anim Sci; 1998 Aug; 76(8):2190-6. PubMed ID: 9734871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic parameters of lactate dehydrogenases of some rumen bacterial species, the anaerobic ciliate Isotricha prostoma and mixed rumen microorganisms.
    Counotte GH; de Groot M; Prins RA
    Antonie Van Leeuwenhoek; 1980; 46(4):363-81. PubMed ID: 6778389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.
    Hino T; Russell JB
    J Anim Sci; 1987 Jan; 64(1):261-70. PubMed ID: 3818489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. II. Interaction of treatment and presence of protozoa on prokaryotic communities.
    Karnati SK; Yu Z; Firkins JL
    J Dairy Sci; 2009 Aug; 92(8):3861-73. PubMed ID: 19620670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium.
    Chen G; Russell JB
    Appl Environ Microbiol; 1990 Jul; 56(7):2186-92. PubMed ID: 1975163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of peptides by rumen microorganisms.
    Wright DE
    Appl Microbiol; 1967 May; 15(3):547-50. PubMed ID: 6035045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymes of the conversion of succinate to glutamate in extracts of rumen microorganisms.
    Emmanuel B; Milligan LP
    Can J Biochem; 1972 Jan; 50(1):1-8. PubMed ID: 5059672
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro.
    Chen GJ; Russell JB
    J Anim Sci; 1991 May; 69(5):2196-203. PubMed ID: 1829725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures.
    Shen J; Yu Z; Zhu W
    Curr Microbiol; 2018 Nov; 75(11):1543-1550. PubMed ID: 30151556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effects of nisin on in vitro fermentation, methanogenesis and functional microbial populations of the rumen].
    Shen J; Liu Z; Chen Y; Lv P; Zhu W
    Wei Sheng Wu Xue Bao; 2016 Aug; 56(8):1348-57. PubMed ID: 29738204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids.
    Blake JS; Salter DN; Smith RH
    Br J Nutr; 1983 Nov; 50(3):769-82. PubMed ID: 6639932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions.
    Kim WY; Hanigan MD; Lee SJ; Lee SM; Kim DH; Hyun JH; Yeo JM; Lee SS
    J Dairy Sci; 2014 Nov; 97(11):7065-75. PubMed ID: 25200786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L; Calsamiglia S; Ferret A
    J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Invited review: Essential oils as modifiers of rumen microbial fermentation.
    Calsamiglia S; Busquet M; Cardozo PW; Castillejos L; Ferret A
    J Dairy Sci; 2007 Jun; 90(6):2580-95. PubMed ID: 17517698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological characteristics of rumen microbes and relation to diet and fermentation patterns.
    Hobson PN
    Proc Nutr Soc; 1972 Sep; 31(2):135-9. PubMed ID: 4628391
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.