BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4091825)

  • 1. Fluorescence quenching of human orosomucoid. Accessibility to drugs and small quenching agents.
    Friedman ML; Schlueter KT; Kirley TL; Halsall HB
    Biochem J; 1985 Dec; 232(3):863-7. PubMed ID: 4091825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide.
    Feldman I; Norton GE
    Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence study of Tn10-encoded tet repressor.
    Wasylewski Z; Kaszycki P; Drwiega M
    J Protein Chem; 1996 Jan; 15(1):45-58. PubMed ID: 8838589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of N-acetylneuraminic acid on the properties of human orosomucoid.
    Friedman ML; Wermeling JR; Halsall HB
    Biochem J; 1986 May; 236(1):149-53. PubMed ID: 3790067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state and time-resolved fluorescence studies on Trichosanthes cucumerina seed lectin.
    Kenoth R; Swamy MJ
    J Photochem Photobiol B; 2003 Mar; 69(3):193-201. PubMed ID: 12695033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins.
    McIntyre JC; Hundley P; Behnke WD
    Biochem J; 1987 Aug; 245(3):821-9. PubMed ID: 3663193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inaccessibility of tryptophan residues of recombinant human renin to quenching agents.
    Epps DE; Poorman R; Hui J; Carlson W; Heinrikson R
    J Biol Chem; 1987 Aug; 262(22):10570-3. PubMed ID: 3301839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies.
    Patanjali SR; Swamy MJ; Surolia A
    Biochem J; 1987 Apr; 243(1):79-86. PubMed ID: 3606583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching in riboflavin-binding protein and its complex with riboflavin.
    Guevara I; Zak Z
    J Protein Chem; 1993 Apr; 12(2):179-85. PubMed ID: 8489704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin.
    Sultan NA; Swamy MJ
    J Photochem Photobiol B; 2005 Aug; 80(2):93-100. PubMed ID: 16038808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venom exonuclease. IV. Intrinsic fluorescence of the exonuclease from Crotalus adamanteus venom.
    Dimitrov DP; Vassileva RA; Dolapchiev LB
    Acta Biochim Pol; 1983; 30(2):223-32. PubMed ID: 6306968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A collapsed intermediate with nonnative packing of hydrophobic residues in the folding of TEM-1 beta-lactamase.
    Vanhove M; Lejeune A; Guillaume G; Virden R; Pain RH; Schmid FX; Frère JM
    Biochemistry; 1998 Feb; 37(7):1941-50. PubMed ID: 9485321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein.
    Pawagi AB; Deber CM
    Biochemistry; 1990 Jan; 29(4):950-5. PubMed ID: 2340286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of substrate binding to the adrenal cytochrome P450C-21 by acrylamide and its implications for solvent accessibility of the binding site in the microsomes.
    Narasimhulu S
    Biochemistry; 1991 Sep; 30(38):9319-27. PubMed ID: 1892836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.
    Liu R; Sharom FJ
    Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching of tryptophanyl fluorescence of bovine adrenal P-450C-21 and inhibition of substrate binding by acrylamide.
    Narasimhulu S
    Biochemistry; 1988 Feb; 27(4):1147-53. PubMed ID: 3259146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.