These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4092033)

  • 1. Reversible blocking of half-cystine residues of proteins and an irreversible specific deamidation of asparagine-67 of S-sulforibonuclease under mild conditions.
    Thannhauser TW; Scheraga HA
    Biochemistry; 1985 Dec; 24(26):7681-8. PubMed ID: 4092033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of monodeamidated derivatives of bovine pancreatic ribonuclease A.
    Venkatesh YP; Vithayathil PJ
    Int J Pept Protein Res; 1984 May; 23(5):494-505. PubMed ID: 6429073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1976; 8(3):275-82. PubMed ID: 6396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and properties of three specific active derivatives of ribonuclease A obtained by methylation of methionine residues in 8 M urea.
    Strak GR; Link TP
    Biochemistry; 1975 Jul; 14(15):4576-81. PubMed ID: 238595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why does ribonuclease irreversibly inactivate at high temperatures?
    Zale SE; Klibanov AM
    Biochemistry; 1986 Sep; 25(19):5432-44. PubMed ID: 3778869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of ribonuclease A from the reduced protein. Isolation and identification of intermediates, and equilibrium treatment.
    Konishi Y; Ooi T; Scheraga HA
    Biochemistry; 1981 Jul; 20(14):3945-55. PubMed ID: 6269576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of protein conformation on rate of deamidation: ribonuclease A.
    Wearne SJ; Creighton TE
    Proteins; 1989; 5(1):8-12. PubMed ID: 2748573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping.
    Fagagnini A; Montioli R; Caloiu A; Ribó M; Laurents DV; Gotte G
    Biochim Biophys Acta Proteins Proteom; 2017 Jan; 1865(1):76-87. PubMed ID: 27783927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes.
    Buckler DR; Haas E; Scheraga HA
    Biochemistry; 1995 Dec; 34(49):15965-78. PubMed ID: 8519753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of mammalian ribonuclease using immobilized human ribonuclease inhibitor.
    Nadano D; Yasuda T; Takeshita H; Sawazaki K; Kishi K
    Protein Expr Purif; 1996 Mar; 7(2):167-72. PubMed ID: 8812855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping.
    Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. Conversion to a homologous inactive preneocarzinostatin due to change of asparagine 83 to aspartic acid 83 accompanied by conformational and biological alterations.
    Maeda H; Kuromizu K
    J Biochem; 1977 Jan; 81(1):25-35. PubMed ID: 14934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of an RNase A derivative containing an aminosuccinyl residue in place of asparagine 67.
    Capasso S; Di Cerbo P
    Biopolymers; 2000-2001; 56(1):14-9. PubMed ID: 11582573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous asparaginyl deamidation of canine milk lysozyme under mild conditions.
    Nonaka Y; Aizawa T; Akieda D; Yasui M; Watanabe M; Watanabe N; Tanaka I; Kamiya M; Mizuguchi M; Demura M; Kawano K
    Proteins; 2008 Jul; 72(1):313-22. PubMed ID: 18214981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of local and global stability of an analogue of a disulfide-folding intermediate with those of the wild-type protein in bovine pancreatic ribonuclease A: identification of specific regions of stable structure along the oxidative folding pathway.
    Laity JH; Montelione GT; Scheraga HA
    Biochemistry; 1999 Dec; 38(50):16432-42. PubMed ID: 10600104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, some properties, and primary structure of base non-specific ribonucleases from Physarum polycephalum.
    Inokuchi N; Koyama T; Sawada F; Irie M
    J Biochem; 1993 Apr; 113(4):425-32. PubMed ID: 8514732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of acid ribonucleases from bovine spleen.
    Ohgi K; Sanda A; Takizawa Y; Irie M
    J Biochem; 1988 Feb; 103(2):267-73. PubMed ID: 3131316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of a new ribonuclease from Aspergillus saitoi.
    Ogi K; Irie M
    J Biochem; 1975 May; 77(5):1085-94. PubMed ID: 239932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of bovine kidney ribonucleases.
    Niwata Y; Ohgi K; Sanda A; Takizawa Y; Irie M
    J Biochem; 1985 Mar; 97(3):923-34. PubMed ID: 3926759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.