These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 4092067)

  • 1. Kinetics of proton exchange of phosphatidylethanolamine in phospholipid vesicles.
    Ralph EK; Lange Y; Redfield AG
    Biophys J; 1985 Dec; 48(6):1053-7. PubMed ID: 4092067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ion concentration on phosphatidylethanolamine distribution in mixed vesicles.
    Koynova RD; Tenchov BG
    Biochim Biophys Acta; 1983 Jan; 727(2):351-6. PubMed ID: 6838877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers.
    Tsui FC; Ojcius DM; Hubbell WL
    Biophys J; 1986 Feb; 49(2):459-68. PubMed ID: 3955180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemical synthesis of N-[1-(2-naphthol)]-phosphatidylethanolamine, a fluorescent phospholipid for excited-state proton transfer studies.
    Neyroz P; Franzoni L; Spisni A; Masotti L; Brand L
    Chem Phys Lipids; 1992 May; 61(3):255-63. PubMed ID: 1326418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of amino groups of phosphatidylethanolamine in phospholipid peroxidation of mixed liposomes.
    Wang JY; Wang ZY; Kouyama T; Shibata T; Ueki T
    Chem Phys Lipids; 1994 May; 71(2):197-203. PubMed ID: 8076402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid packing and conformation in small vesicles revealed by two-dimensional 1H nuclear magnetic resonance cross-relaxation spectroscopy.
    Xu ZC; Cafiso DS
    Biophys J; 1986 Mar; 49(3):779-83. PubMed ID: 3754469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Characteristics of phospholipid hydrolysis kinetics by phospholipase C from Bacillus cereus. Hydrolysis of phosphatidylinositol in various aggregated states].
    Selishcheva AA; Miroshnikova TA; Voronin MV; Vasilenko IA
    Biokhimiia; 1993 Mar; 58(3):340-7. PubMed ID: 8485222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent stability and fusion of liposomes combining protonatable double-chain amphiphiles with phosphatidylethanolamine.
    Leventis R; Diacovo T; Silvius JR
    Biochemistry; 1987 Jun; 26(12):3267-76. PubMed ID: 3651381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-induced membrane fusion. Role of phospholipid composition and protein-mediated intermembrane contact.
    Bondeson J; Wijkander J; Sundler R
    Biochim Biophys Acta; 1984 Oct; 777(1):21-7. PubMed ID: 6091753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESR study of proton transport across phospholipid vesicle membranes.
    Khramtsov VV; Panteleev MV; Weiner LM
    J Biochem Biophys Methods; 1989 May; 18(3):237-46. PubMed ID: 2543696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the phosphatidyl ethanolamine amino proton magnetic resonance in phospholipid vesicles: inside/outside ratios and proton transport.
    Lange Y; Ralph EK; Redfield AG
    Biochem Biophys Res Commun; 1975 Feb; 62(4):891-4. PubMed ID: 1168058
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.
    Menestrina G; Forti S; Gambale F
    Biophys J; 1989 Mar; 55(3):393-405. PubMed ID: 2467697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependency of delta pH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids.
    Grzesiek S; Dencher NA
    Biophys J; 1986 Aug; 50(2):265-76. PubMed ID: 3017468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cholesterol, diacylglycerol and phosphatidylethanolamine on PEG 6000 induced lipid mixing and surface dielectric constant of phosphatidylcholine vesicle.
    Zschörnig O; Ohki S
    Gen Physiol Biophys; 1993 Jun; 12(3):259-69. PubMed ID: 8224782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR investigation of histamine-phospholipid interaction.
    Abernethy D; Fitzgerald TJ; Walaszek EJ
    Biochem Biophys Res Commun; 1974 Jul; 59(2):535-41. PubMed ID: 4853403
    [No Abstract]   [Full Text] [Related]  

  • 16. Application of (1)H and (31)P NMR to topological description of a model of biological membrane fusion: topological description of a model of biological membrane fusion.
    Janiak-Osajca A; Timoszyk A
    Acta Biochim Pol; 2012; 59(2):219-24. PubMed ID: 22590692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of pulsed-gradient Fourier transform nuclear magnetic resonance to the study of self-diffusion of phospholipid vesicles.
    McDonald GG; Vanderkooi JM
    Biochemistry; 1975 May; 14(10):2125-7. PubMed ID: 1170878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of surface potential asymmetry in phospholipid vesicles by a spin label relaxation method.
    Sundberg SA; Hubbell WL
    Biophys J; 1986 Feb; 49(2):553-62. PubMed ID: 3006815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface modification on aggregation of phospholipid vesicles.
    Wu PS; Tin GW; Baldeschwieler JD; Shen TY; Ponpipom MM
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6211-5. PubMed ID: 6947223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interaction of (R)-3-hydroxybutyrate dehydrogenase with membrane phosphatidylcholine as studied by ESR spectroscopy in oriented phospholipid multibilayers: coenzyme binding enhances the interaction with phosphatidylcholine.
    Klein K; Rudy B; McIntyre JO; Fleischer S; Trommer WE
    Biochemistry; 1996 Mar; 35(9):3044-9. PubMed ID: 8608144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.