These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 4092883)

  • 41. Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification.
    Yang J; Fan L; Wang F; Luo Y; Sui X; Li W; Zhang X; Wang Y
    Nanoscale; 2016 May; 8(18):9537-47. PubMed ID: 26730700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymes related to monoamine transmitter metabolism in brain microvessels.
    Hardebo JE; Emson PC; Falck B; Owman C; Rosengren E
    J Neurochem; 1980 Dec; 35(6):1388-93. PubMed ID: 6108352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of soman on norepinephrine uptake, release, and metabolism.
    Hu CY; Robinson CP
    Toxicol Appl Pharmacol; 1988 Nov; 96(2):185-90. PubMed ID: 3194912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Permeability function related to cerebral microvessel enzymes during ageing in rats.
    Agrawal A; Shukla R; Tripathi LM; Pandey VC; Srimal RC
    Int J Dev Neurosci; 1996 Apr; 14(2):87-91. PubMed ID: 8735783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for the neuronal origin of brain capillary acetylcholinesterase activity.
    Karcsú S; Tóth L; Király E; Jancsó G
    Brain Res; 1981 Feb; 206(1):203-7. PubMed ID: 7470887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of the calcium antagonist nimodipine on the detoxification of soman in anaesthetized rabbits.
    Karlsson BM; Waara LM; Fredriksson SA; Koskinen LO
    J Pharm Pharmacol; 1997 Mar; 49(3):296-300. PubMed ID: 9231349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correlations between acetylcholinesterase activity in guinea-pig iris and pupillary function: a biochemical and pupillographic study.
    Søli NE; Karlsen RL; Opsahl M; Fonnum F
    J Neurochem; 1980 Sep; 35(3):723-8. PubMed ID: 7452283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The protective effect of nimodipine, a calcium antagonist, and its influence on soman clearance in the anaesthetized rabbit.
    Karlsson B; Fredriksson SA; Sellström A; Algers G
    J Pharm Pharmacol; 1994 Feb; 46(2):123-7. PubMed ID: 8021800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of [32P] soman for measurement of acetylcholinesterase in brain tissues.
    Thomas NC; Fleisher JH; Harris LW
    Biochim Biophys Acta; 1971 Jun; 235(3):542-7. PubMed ID: 4951269
    [No Abstract]   [Full Text] [Related]  

  • 50. Use of Hupresin To Capture Red Blood Cell Acetylcholinesterase for Detection of Soman Exposure.
    Onder S; Schopfer LM; Cashman JR; Tacal O; Johnson RC; Blake TA; Lockridge O
    Anal Chem; 2018 Jan; 90(1):974-979. PubMed ID: 29172437
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protection against organophosphate poisoning in vivo and inhibition of choline-acetyltransferase in vitro.
    Schoene K; Steinhanses J; Oldiges H
    Biochem Pharmacol; 1977 Oct; 26(19):1821-3. PubMed ID: 907720
    [No Abstract]   [Full Text] [Related]  

  • 52. Experimental lead encephalopathy in the suckling rat: concentration of lead in cellular fractions enriched in brain capillaries.
    Toews AD; Kolber A; Hayward J; Krigman MR; Morell P
    Brain Res; 1978 May; 147(1):131-8. PubMed ID: 656908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of metabolically active capillaries of the blood-brain barrier.
    Dallaire L; Tremblay L; Béliveau R
    Biochem J; 1991 Jun; 276 ( Pt 3)(Pt 3):745-52. PubMed ID: 1712199
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activity of the soluble and membrane-bound acetylcholinesterase of the rabbit brain during development.
    Niemierko S; Skangiel-Kramska J
    Bull Acad Pol Sci Biol; 1976; 24(8):445-8. PubMed ID: 990967
    [No Abstract]   [Full Text] [Related]  

  • 55. Circadian susceptibility to Soman poisoning.
    Elsmore TF
    Fundam Appl Toxicol; 1981; 1(2):238-41. PubMed ID: 7184788
    [No Abstract]   [Full Text] [Related]  

  • 56. Studies on the variations of monoamineoxidase and acetylcholinesterase activities in the brain under some environmental conditions. 1. Seasonal variation of monoamineoxidase and acetylcholinesterase activities.
    Kojima T
    Nihon Eiseigaku Zasshi; 1966 Feb; 20(6):351-8. PubMed ID: 5949359
    [No Abstract]   [Full Text] [Related]  

  • 57. [Studies on the variations of monoamineoxidase and acetylcholinesterase activities in the brain under physical environmental conditions. 2. Influences of different physical environmental conditions on monoamineoxidase and acetylcholinesterase activities].
    Kojima T
    Nihon Eiseigaku Zasshi; 1966 Apr; 21(1):20-6. PubMed ID: 6008111
    [No Abstract]   [Full Text] [Related]  

  • 58. Molecular forms of butyrylcholinesterase in rat brain microvessels.
    Catalán RE; Martínez AM; Aragonés MD; Hernández F
    Neurosci Lett; 1990 Nov; 120(1):46-9. PubMed ID: 2293090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of various lead doses on some cerebral capillary functions in the suckling rat.
    Lefauconnier JM; Lavielle E; Terrien N; Bernard G; Fournier E
    Toxicol Appl Pharmacol; 1980 Sep; 55(3):467-76. PubMed ID: 7434359
    [No Abstract]   [Full Text] [Related]  

  • 60. ACETYLCHOLINESTERASE ACTIVITY OF CAPILLARY BLOOD VESSELS IN THE CENTRAL NERVOUS SYSTEM OF THE RABBIT.
    CROOK JC
    Nature; 1963 Jul; 199():41-3. PubMed ID: 14054525
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.