These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 4093164)

  • 1. Papain inhibitory activity in normal & cataractous mammalian lenses.
    Chandrasekher G; Virupaksha HS; Pattabiraman TN
    Indian J Med Res; 1985 Nov; 82():458-62. PubMed ID: 4093164
    [No Abstract]   [Full Text] [Related]  

  • 2. Proteases and protease inhibitory activities in normal mammalian lenses and human cataractous lenses.
    Swaminathan S; Chandrasekher G; Venkataraman A; Pattabiraman TN
    Biochem Med Metab Biol; 1986 Apr; 35(2):184-90. PubMed ID: 3518755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies on elastase and trypsin inhibitory activities in mammalian lenses.
    Swaminathan S; Pattabiraman TN
    Biochem Med Metab Biol; 1986 Dec; 36(3):313-6. PubMed ID: 3643037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Measurements of fluorescence spectra in transparent and cataractous lenses].
    Balter A; Bieganowski L; Maciejewski K; Marszałek T
    Klin Oczna; 1988; 90 Suppl():474-5. PubMed ID: 3275362
    [No Abstract]   [Full Text] [Related]  

  • 8. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Na-K-ATPase activity in the normal aging crystalline lens and in senile cataract].
    Nordmann J; Klethi J
    Arch Ophtalmol (Paris); 1976; 36(6-7):523-8. PubMed ID: 136953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in lens gangliosides due to aging and cataract progression in human senile cataract.
    Ogiso M; Saito N; Sudo K; Kubo H; Hirano S; Komoto M
    Invest Ophthalmol Vis Sci; 1990 Oct; 31(10):2171-9. PubMed ID: 2211013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of protein diffusivity in intact human and bovine lenses with application to cataract.
    Tanaka T; Benedek GB
    Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced, oxidized, and protein-bound glutathione concentrations in normal and cataractous lenses in the dog.
    Gelatt KN; Bruss M; DeCostanza SM; Noonan NE; Das ND; Wolf ED
    Am J Vet Res; 1982 Jul; 43(7):1215-7. PubMed ID: 7103204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on human lenses: II. Distribution and solubility of fluorescent pigments in cataractous and non-cataractous lenses of Indian origin.
    Bandyopadhyay S; Chattopadhyay D; Ghosh SK; Chakrabarti B
    Photochem Photobiol; 1992 May; 55(5):765-72. PubMed ID: 1528989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.