These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 4093164)

  • 21. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transaminase activity of the normal human crystalline lens and of the cataractous lens].
    PONTE F; PANDOLFO L
    Boll Soc Ital Biol Sper; 1959 Feb; 35(3):142-3. PubMed ID: 13638423
    [No Abstract]   [Full Text] [Related]  

  • 23. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Emory mouse cataract: increased accumulation of calcium during cataractogenesis.
    Kuck JF; Kuck KD
    Lens Eye Toxic Res; 1989; 6(4):853-62. PubMed ID: 2487287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses.
    Boyle DL; Takemoto LJ
    Exp Eye Res; 1999 Jan; 68(1):41-9. PubMed ID: 9986740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiol oxidation in the crystalline lens. I. The rate-limiting role of hexokinase in aging rat and human lenses.
    Cheng HM; Chylack LT
    Invest Ophthalmol Vis Sci; 1980 May; 19(5):522-8. PubMed ID: 7372415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gangliosides in human and monkey lenses.
    Sudo K; Sugai M; Komoto M; Asou H; Hirano S
    Jpn J Ophthalmol; 1986; 30(2):197-202. PubMed ID: 3093739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Decomposition of H2O2 by human cataractous lenses].
    Babizhaev MA; Deev AI; Vladimirov IuA; Deeva IB
    Biull Eksp Biol Med; 1986 Aug; 102(8):158-60. PubMed ID: 3742026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Coenzyme A content of young, old and cataractous lenses].
    PUTTER J; DARDENNE U
    Hoppe Seylers Z Physiol Chem; 1958; 310(1-2):59-64. PubMed ID: 13548879
    [No Abstract]   [Full Text] [Related]  

  • 32. Human aging lens--a quantitative study DNA, RNA and total soluble protein in normal and cataractous lenses.
    Rawal UM; Khamar BM; Gandhi DN
    Indian J Ophthalmol; 1983 May; 31(3):258-61. PubMed ID: 6202631
    [No Abstract]   [Full Text] [Related]  

  • 33. [Accumulation of lipid peroxidation products in cataractous lenses].
    Babizhaev MA; Shvedova AA; Arkhipenko IuV; Kagan VE
    Biull Eksp Biol Med; 1985 Sep; 100(9):299-301. PubMed ID: 4041596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. H2O2-dependent NADH oxidation activity in senile cataractous human lens: its relation to glutathione redox cycle.
    Bando M; Obazawa H
    Jpn J Ophthalmol; 1990; 34(2):188-95. PubMed ID: 2214362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The biosynthesis of leukotriene B4 in human cataractous lens and in bovine lens].
    Fujiwara H; Nakata K
    Nippon Ganka Gakkai Zasshi; 1985 Nov; 89(11):1182-7. PubMed ID: 3004161
    [No Abstract]   [Full Text] [Related]  

  • 37. Carbohydrate composition of the human cataractous lenses.
    Alao JF
    Experientia; 1977 Jul; 33(7):862-3. PubMed ID: 891755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Oxidation of the proteins of the crystalline lens in senescence and in cataract].
    Auricchio G; Testa M; Bocci N; Fiore C; CalabrĂ² S
    Boll Ocul; 1968 Jan; 47(1):3-15. PubMed ID: 5703755
    [No Abstract]   [Full Text] [Related]  

  • 39. On the enzymology of the refractory media of the eye. V. On the occurrence of proteolytic enzymes in normal and cataractous lenses.
    ZELLER EA; DEVI A
    Am J Ophthalmol; 1957 Nov; 44(5 Pt 2):281-3; discussion 283-4. PubMed ID: 13469991
    [No Abstract]   [Full Text] [Related]  

  • 40. The bovine lens as an ion-exchanger: a comparison with ion levels in human cataractous lenses.
    Duncan G; Bushell AR
    Exp Eye Res; 1976 Sep; 23(3):341-53. PubMed ID: 976375
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.