These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4093758)

  • 1. Differences between upstroke and downstroke in swimming dolphins.
    Videler J; Kamermans P
    J Exp Biol; 1985 Nov; 119():265-74. PubMed ID: 4093758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of time-varying kinematics of a dolphin in burst accelerating swimming.
    Tanaka H; Li G; Uchida Y; Nakamura M; Ikeda T; Liu H
    PLoS One; 2019; 14(1):e0210860. PubMed ID: 30699184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrust generation and propulsive efficiency in dolphin-like swimming propulsion.
    Guo J; Zhang W; Han P; Fish FE; Dong H
    Bioinspir Biomim; 2023 Jul; 18(5):. PubMed ID: 37414002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force.
    Harada N; Tanaka H
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36408785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.
    Fish FE; Legac P; Williams TM; Wei T
    J Exp Biol; 2014 Jan; 217(Pt 2):252-60. PubMed ID: 24431145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upstroke-based acceleration and head stabilization are the norm for the wing-propelled swimming of alcid seabirds.
    Lapsansky AB; Tobalske BW
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31160426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of diving Atlantic puffins (Fratercula arctica L.): evidence for an active upstroke.
    Johansson LC; Aldrin BS
    J Exp Biol; 2002 Feb; 205(Pt 3):371-8. PubMed ID: 11854373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.
    Lovvorn JR; Croll DA; Liggins GA
    J Exp Biol; 1999 Jul; 202(Pt 13):1741-52. PubMed ID: 10359677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics and hydrodynamics analyses of swimming penguins: wing bending improves propulsion performance.
    Harada N; Oura T; Maeda M; Shen Y; Kikuchi DM; Tanaka H
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34553753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin.
    Watanuki Y; Wanless S; Harris M; Lovvorn JR; Miyazaki M; Tanaka H; Sato K
    J Exp Biol; 2006 Apr; 209(Pt 7):1217-30. PubMed ID: 16547294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drag reduction and locomotory power in dolphins: Gray's paradox revealed.
    Davis RW; Fiori L; Würsig B; Orbach DN
    J R Soc Interface; 2024 Sep; 21(218):20240227. PubMed ID: 39257283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diving physiology of bottlenose dolphins (Tursiops truncatus). II. Biomechanics and changes in buoyancy at depth.
    Skrovan RC; Williams TM; Berry PS; Moore PW; Davis RW
    J Exp Biol; 1999 Oct; 202(Pt 20):2749-61. PubMed ID: 10504311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.
    Crandell KE; Tobalske BW
    J Exp Biol; 2011 Jun; 214(Pt 11):1867-73. PubMed ID: 21562173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic fin function of brief squid, Lolliguncula brevis.
    Stewart WJ; Bartol IK; Krueger PS
    J Exp Biol; 2010 Jun; 213(Pt 12):2009-24. PubMed ID: 20511514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the hand's acceleration and the relative contribution of drag and lift forces in front crawl swimming.
    Gourgoulis V; Boli A; Aggeloussis N; Antoniou P; Toubekis A; Mavromatis G
    J Sports Sci; 2015; 33(7):696-712. PubMed ID: 25429796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic, aerodynamic and anatomical mechanisms in the slow, maneuvering flight of pigeons.
    Warrick D; k
    J Exp Biol; 1998 Jun; 201 (Pt 12)():655-72. PubMed ID: 9450975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.