BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 4093969)

  • 1. Phase separation in frozen erythrocyte membrane preparations.
    Finean JB; Hutchinson A; Mills D
    J Microsc; 1985 Oct; 140(Pt 1):93-8. PubMed ID: 4093969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction and electron microscopy studies of frozen erythrocyte membrane preparations.
    Rzepecki LM; Berriman J; Finean JB
    Biochim Biophys Acta; 1980 Jul; 600(1):72-8. PubMed ID: 7397175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An X-ray diffraction and electron microscopy study of the extraction of erythrocyte membranes with the bile salt, cholate.
    Finean JB; Gunn TK; Hutchinson A; Mills D
    Biochim Biophys Acta; 1984 Oct; 777(1):140-6. PubMed ID: 6487616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in the appearance of membrane particles after various pretreatments.
    Richter W
    Acta Histochem Suppl; 1981; 23():165-71. PubMed ID: 6784161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of Sendai viruses or subviral envelope components with chicken erythrocytes observed by freeze-fracture electron microscopy.
    Hosaka Y; Yasuda Y; Fukai K; Ikeuchi Y
    Microbiol Immunol; 1983; 27(1):25-41. PubMed ID: 6306407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of the intramembraneous particle.
    Verkleij AJ; Ververgaert PH
    Acta Histochem Suppl; 1981; 23():137-43. PubMed ID: 6784157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated x-ray diffraction and freeze-fracture studies on membrane model systems. Perturbations induced by freeze-fracture preparative procedures.
    Costello MJ; Gulik-Krzywicki T
    Biochim Biophys Acta; 1976 Dec; 455(2):412-32. PubMed ID: 187241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-fracture electron microscopic observations on the effects of sulphydryl group reagents on human erythrocyte membranes.
    Benga G; Brain A; Pop VI; Hodarnau A; Wrigglesworth JM
    Cell Biol Int Rep; 1987 Sep; 11(9):679-87. PubMed ID: 3677180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes.
    Tournois H; Leunissen-Bijvelt J; Haest CW; de Gier J; de Kruijff B
    Biochemistry; 1987 Oct; 26(21):6613-21. PubMed ID: 2447938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyvinyl alcohol coating: an improvement of the freeze-fracture technique.
    Brown D
    J Microsc; 1981 Mar; 121(Pt 3):283-7. PubMed ID: 7218348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze fracture electron microscopy of lyotropic lipid systems: quantitative analysis of the inverse micellar cubic phase of space group Fd3m (Q227).
    Delacroix H; Gulik-Krzywicki T; Seddon JM
    J Mol Biol; 1996 Apr; 258(1):88-103. PubMed ID: 8613995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of low temperature X-ray diffraction to evaluate freezing methods used in freeze-fracture electron microscopy.
    Gulik-Krzywicki T; Costello MJ
    J Microsc; 1978 Jan; 112(1):103-13. PubMed ID: 641982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture-flip: nanoanatomy and topochemistry of cell surfaces.
    da Silva PP; Forsman CA; Fujimoto K
    Prog Clin Biol Res; 1989; 295():49-56. PubMed ID: 2748664
    [No Abstract]   [Full Text] [Related]  

  • 16. [The ultrastructural and dynamic characteristics of erythrocyte membranes. The effect of the physiological status and temperature].
    Repin NV; Repina SV
    Tsitologiia; 1990; 32(11):1094-8. PubMed ID: 1965519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling.
    Fujimoto K; Umeda M; Fujimoto T
    J Cell Sci; 1996 Oct; 109 ( Pt 10)():2453-60. PubMed ID: 8923206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice.
    Fujikawa S
    Cryobiology; 1980 Aug; 17(4):351-62. PubMed ID: 7398362
    [No Abstract]   [Full Text] [Related]  

  • 19. A freeze-etch electron microscopic study of liquid propane jet-frozen human erythrocyte membranes.
    Espevik T; Elgsaeter A
    J Microsc; 1981 May; 122(Pt 2):159-63. PubMed ID: 7230255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-Fracture Electron Microscopy on Domains in Lipid Mono- and Bilayer on Nano-Resolution Scale.
    Papahadjopoulos-Sternberg B
    Methods Mol Biol; 2017; 1522():55-72. PubMed ID: 27837530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.