BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4093988)

  • 1. Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview.
    Smith MT
    J Toxicol Environ Health; 1985; 16(5):665-72. PubMed ID: 4093988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzo[a]pyrene dione-benzo[a]pyrene diol oxidation-reduction couples; involvement in DNA damage, cellular toxicity, and carcinogenesis.
    Lesko SA; Lorentzen RJ
    J Toxicol Environ Health; 1985; 16(5):679-91. PubMed ID: 3005601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenicity and cytotoxicity of benzo(a)pyrene arene oxides, phenols, quinones, and dihydrodiols in bacterial and mammalian cells.
    Wislocki PG; Wood AW; Chang RL; Levin W; Yagi H; Hernandez O; Dansette PM; Herina DM; Conney AH
    Cancer Res; 1976 Sep; 36(9 pt.1):3350-7. PubMed ID: 788898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase (DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines.
    Beall HD; Murphy AM; Siegel D; Hargreaves RH; Butler J; Ross D
    Mol Pharmacol; 1995 Sep; 48(3):499-504. PubMed ID: 7565631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxic mechanisms of anti-tumour quinones in parental and resistant lymphoblasts.
    Halinska A; Belej T; O'Brien PJ
    Br J Cancer Suppl; 1996 Jul; 27():S23-7. PubMed ID: 8763840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinogenicity and mutagenicity of N-nitroso compounds.
    Lijinsky W
    Mol Toxicol; 1987; 1(1):107-19. PubMed ID: 3329700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are reduced quinones necessarily involved in the antitumour activity of quinone drugs?
    Butler J; Hoey BM
    Br J Cancer Suppl; 1987 Jun; 8():53-9. PubMed ID: 3307874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of DT-diaphorase in cancer chemoprevention and chemotherapy.
    Begleiter A; Leith MK; Curphey TJ; Doherty GP
    Oncol Res; 1997; 9(6-7):371-82. PubMed ID: 9406243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimutagens, anticarcinogens, and effective worldwide cancer prevention.
    Weisburger JH
    J Environ Pathol Toxicol Oncol; 1999; 18(2):85-93. PubMed ID: 15281219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical formation by antitumor quinones.
    Powis G
    Free Radic Biol Med; 1989; 6(1):63-101. PubMed ID: 2492250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data mining the NCI cancer cell line compound GI(50) values: identifying quinone subtypes effective against melanoma and leukemia cell classes.
    Marx KA; O'Neil P; Hoffman P; Ujwal ML
    J Chem Inf Comput Sci; 2003; 43(5):1652-67. PubMed ID: 14502500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenicity of several classes of antitumor agents to Salmonella typhimurium TA98, TA100, and TA92.
    Seino Y; Nagao M; Yahagi T; Hoshi A; Kawachi T; Sugimura T
    Cancer Res; 1978 Jul; 38(7):2148-56. PubMed ID: 350383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics.
    Pritsos CA; Sartorelli AC
    Cancer Res; 1986 Jul; 46(7):3528-32. PubMed ID: 3011250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds.
    Wallace MA; Bailey S; Fukuto JM; Valentine JS; Gralla EB
    Chem Res Toxicol; 2005 Aug; 18(8):1279-86. PubMed ID: 16097801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotoxicity of 1,3-butadiene and its epoxy intermediates.
    Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF;
    Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unifying mechanism in the initiation of cancer and other diseases by catechol quinones.
    Cavalieri EL; Rogan EG
    Ann N Y Acad Sci; 2004 Dec; 1028():247-57. PubMed ID: 15650250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.