These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4094452)

  • 21. A physical model of nerve axon. II: Action potential and excitation currents. Voltage-clamp studies of chemical driving forces of Na+ and K+ in squid giant axon.
    Chang DC
    Physiol Chem Phys; 1979; 11(3):263-88. PubMed ID: 531110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular fields within the cortex.
    Green HS; Triffet T
    J Theor Biol; 1985 Jul; 115(1):43-64. PubMed ID: 4033163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. THE SQUID GIANT AXON. MATHEMATICAL MODELS.
    HOYT RC
    Biophys J; 1963 Sep; 3(5):399-431. PubMed ID: 14062458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionic mechanism of the salicylate block of nerve conduction.
    Neto FR; Narahashi T
    J Pharmacol Exp Ther; 1976 Nov; 199(2):454-63. PubMed ID: 978495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interactions between potassium and sodium currents in generating action potentials in the rat sympathetic neurone.
    Belluzzi O; Sacchi O
    J Physiol; 1988 Mar; 397():127-47. PubMed ID: 2457694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifurcations in the decremental propagation of a spike train in the Hodgkin-Huxley model of low excitability.
    Horikawa Y
    Biol Cybern; 1998 Sep; 79(3):251-61. PubMed ID: 9810682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The singularly perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity.
    Awiszus F; Dehnhardt J; Funke T
    J Math Biol; 1990; 28(2):177-95. PubMed ID: 2319211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A voltage-gated potassium channel in human T lymphocytes.
    Cahalan MD; Chandy KG; DeCoursey TE; Gupta S
    J Physiol; 1985 Jan; 358():197-237. PubMed ID: 2580081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A note on the asymptotic reduction of the Hodgkin-Huxley equations for nerve impulses.
    Hinch R
    Bull Math Biol; 2005 Sep; 67(5):947-55. PubMed ID: 15998489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetanic hyperpolarization of single medullated nerve fibers in sodium and lithium.
    Schoepfle GM
    Am J Physiol; 1976 Oct; 231(4):1033-8. PubMed ID: 10735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demonstration of sodium and potassium conductance changes during a nerve action potential.
    Rojas E; Bezanilla F; Taylor RE
    Nature; 1970 Feb; 225(5234):747-8. PubMed ID: 5412781
    [No Abstract]   [Full Text] [Related]  

  • 32. Relaxation spectra of potassium channel noise from squid axon membranes.
    Fishman HM
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):876-9. PubMed ID: 4514998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon.
    Easton DM
    Biophys J; 1978 Apr; 22(1):15-28. PubMed ID: 638223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane conductances involved in amplification of small signals by sodium channels in photoreceptors of drone honey bee.
    Vallet AM; Coles JA; Eilbeck JC; Scott AC
    J Physiol; 1992 Oct; 456():303-24. PubMed ID: 1338099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of antiarrhythmic drugs on cardiac membrane conductances; a study using the Hodgkin and Huxley mathematical model.
    Ducouret P; Massé C
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():323-8. PubMed ID: 1081253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Possible role of the molecular characteristics of sodium channel inactivation system of the nerve fiber in impulse coding].
    Gnetov AV; Krylov BV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Jan; 71(1):95-104. PubMed ID: 2578995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma.
    Connor JA; Stevens CF
    J Physiol; 1971 Feb; 213(1):31-53. PubMed ID: 5575343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary involvement of K+ conductance in membrane resonance of trigeminal root ganglion neurons.
    Puil E; Gimbarzevsky B; Spigelman I
    J Neurophysiol; 1988 Jan; 59(1):77-89. PubMed ID: 2449522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corrections for space-clamp errors in measured parameters of voltage-dependent conductances in a cylindrical neurite.
    Castelfranco AM; Hartline DK
    Biol Cybern; 2004 Apr; 90(4):280-90. PubMed ID: 15085347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A "convertible pore" model of neural membrane conductance.
    Wooldridge DE
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7238-42. PubMed ID: 6095278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.