BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 4094457)

  • 1. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic efficiency, kinetic co-operativity of oligomeric enzymes and evolution.
    Ricard J; Noat G
    J Theor Biol; 1986 Dec; 123(4):431-51. PubMed ID: 3657187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic co-operativity of monomeric mnemonical enzymes. The significance of the kinetic Hill coefficient.
    Ricard J; Noat G
    Eur J Biochem; 1985 Nov; 152(3):557-64. PubMed ID: 4054121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-operativity in monomeric enzymes.
    Cornish-Bowden A; Cárdenas ML
    J Theor Biol; 1987 Jan; 124(1):1-23. PubMed ID: 3309473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic implications of the occurrence of several relaxations in the conformational transition of mnemonical enzymes.
    Ricard J; Soulié JM; Buc J; Bidaud M
    Eur J Biochem; 1986 Sep; 159(2):247-54. PubMed ID: 3758062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity.
    Ishikawa H; Ogino H; Oshida H
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant.
    Giordano A; Febbraio F; Russo C; Rossi M; Raia CA
    Biochem J; 2005 Jun; 388(Pt 2):657-67. PubMed ID: 15651978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of apparent co-operativity in a simple random non-equilibrium enzyme--substrate--modifier mechanism. Comparison with equilibrium allosteric models.
    Whitehead EP; Egmond MR
    Biochem J; 1979 Feb; 177(2):631-9. PubMed ID: 435256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 2. Thermodynamics of kinetic cooperativity.
    Giudici-Orticoni MT; Buc J; Ricard J
    Eur J Biochem; 1990 Dec; 194(2):475-81. PubMed ID: 2269279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Letter: Kinetic negative co-operativity in the allosteric model of Monod, Wyman and Changeux.
    Goldbeter A
    J Mol Biol; 1974 Nov; 90(1):185-90. PubMed ID: 4453011
    [No Abstract]   [Full Text] [Related]  

  • 11. pH-induced co-operative effects in hysteretic enzymes. 1. A theoretical model of a new type of co-operative behaviour controlled by pH.
    Ricard J; Noat G; Nari J
    Eur J Biochem; 1984 Dec; 145(2):311-7. PubMed ID: 6499845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-operativity and the methods of plotting binding and steady-state kinetic data.
    Whitehead EP
    Biochem J; 1978 May; 171(2):501-4. PubMed ID: 656060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit interactions in enzyme transition states--antagonism between substrate binding and reaction rate.
    Ricard J; Noat G
    J Theor Biol; 1984 Dec; 111(4):737-53. PubMed ID: 6527549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized microscopic reversibility, kinetic co-operativity of enzymes and evolution.
    Ricard J
    Biochem J; 1978 Dec; 175(3):779-91. PubMed ID: 743234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent co-operativity for highly concentrated Michaelian and allosteric enzymes.
    Laurent M; Kellershohn N
    J Mol Biol; 1984 Apr; 174(3):543-55. PubMed ID: 6716486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic control of immobilized enzymes. Kinetics of acid phosphatase bound to plant cell walls.
    Ricard J; Noat G; Crasnier M; Job D
    Biochem J; 1981 May; 195(2):357-67. PubMed ID: 7316956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-operativity and enzymatic activity in polymer-activated enzymes. A one-dimensional piggy-back binding model and its application to the DNA-dependent ATPase of DNA gyrase.
    Chen Y; Maxwell A; Westerhoff HV
    J Mol Biol; 1986 Jul; 190(2):201-14. PubMed ID: 3025451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The modulation of enzyme reaction rates within multi-enzyme complexes. 2. Information transfer within a chloroplast multi-enzyme complex containing ribulose bisphosphate carboxylase-oxygenase.
    Gontero B; Giudici-Orticoni MT; Ricard J
    Eur J Biochem; 1994 Dec; 226(3):999-1006. PubMed ID: 7813491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of hexokinase D ('glucokinase') with inosine triphosphate as phosphate donor. Loss of kinetic co-operativity with respect to glucose.
    Pollard-Knight D; Cornish-Bowden A
    Biochem J; 1987 Aug; 245(3):625-9. PubMed ID: 3663182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes.
    Ricard J; Mouttet C; Nari J
    Eur J Biochem; 1974 Feb; 41(3):479-97. PubMed ID: 4817559
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.