These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 40956)

  • 1. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme.
    Boronat A; Aguilar J
    J Bacteriol; 1979 Nov; 140(2):320-6. PubMed ID: 40956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase.
    Boronat A; Aguilar J
    J Bacteriol; 1981 Jul; 147(1):181-5. PubMed ID: 7016842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
    Chen YM; Lin EC
    J Bacteriol; 1984 Mar; 157(3):828-32. PubMed ID: 6421801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1976 Jun; 126(3):1166-72. PubMed ID: 181364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.
    Baldomà L; Aguilar J
    J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism.
    Cocks GT; Aguilar T; Lin EC
    J Bacteriol; 1974 Apr; 118(1):83-8. PubMed ID: 4595205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae.
    Badía J; Ros J; Aguilar J
    J Bacteriol; 1985 Jan; 161(1):435-7. PubMed ID: 3918008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and structural evidence for the presence of propanediol oxidoreductase isoenzymes in Escherichia coli.
    Ros J; Aguilar J
    J Gen Microbiol; 1984 Mar; 130(3):687-92. PubMed ID: 6427403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
    Chen YM; Tobin JF; Zhu Y; Schleif RF; Lin EC
    J Bacteriol; 1987 Aug; 169(8):3712-9. PubMed ID: 3301811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evolution of propanediol oxidoreductase in Escherichia coli. Comparative analysis of the wild-type and mutant enzymes.
    Boronat A; Aguilar J
    Biochim Biophys Acta; 1981 Jan; 672(1):98-107. PubMed ID: 7011418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1977 May; 130(2):832-8. PubMed ID: 400796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propanediol oxidoreductases of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Aspects of interspecies structural and regulatory differentiation.
    Ros J; Aguilar J
    Biochem J; 1985 Oct; 231(1):145-9. PubMed ID: 3904730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.
    Chen YM; Zhu Y; Lin EC
    J Bacteriol; 1987 Jul; 169(7):3289-94. PubMed ID: 3298215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions.
    Millard P; Pérochon J; Létisse F
    Appl Environ Microbiol; 2021 Jul; 87(16):e0071921. PubMed ID: 34047632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power.
    Hacking AJ; Aguilar J; Lin EC
    J Bacteriol; 1978 Nov; 136(2):522-30. PubMed ID: 361712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1, 2-propanediol.
    Sridhara S; Wu TT; Chused TM; Lin EC
    J Bacteriol; 1969 Apr; 98(1):87-95. PubMed ID: 4306747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of propanediol oxidoreductase of Escherichia coli by metal-catalyzed oxidation.
    Cabiscol E; Badia J; Baldoma L; Hidalgo E; Aguilar J; Ros J
    Biochim Biophys Acta; 1992 Jan; 1118(2):155-60. PubMed ID: 1730033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli.
    Zhu Y; Lin EC
    J Bacteriol; 1989 Feb; 171(2):862-7. PubMed ID: 2644239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of operon fusions to examine the regulation of the L-1,2-propanediol oxidoreductase gene of the fucose system in Escherichia coli K12.
    Chen YM; Lin EC; Ros J; Aguilar J
    J Gen Microbiol; 1983 Nov; 129(11):3355-62. PubMed ID: 6319547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-transcriptional control of L-1,2-propanediol oxidoreductase in the L-fucose pathway of Escherichia coli K-12.
    Chen YM; Lin EC
    J Bacteriol; 1984 Jan; 157(1):341-4. PubMed ID: 6418721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.