These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 4095821)

  • 1. Radioprotection of the kidney with degradable microspheres. A pilot study in the dog with repeated irradiation.
    Tuma R; Forsberg JO; Graffman S; Jung B; Lynch PR
    Ups J Med Sci; 1985; 90(3):259-63. PubMed ID: 4095821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kidney radioprotection by temporary hypoxia. Experiments with degradable microspheres.
    Forsberg JO; Hillered L; Graffman S; Jung B; Persson E; Selén G
    Scand J Urol Nephrol; 1981; 15(2):147-52. PubMed ID: 7330609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucosal protection during irradiation of exteriorized rat ileum. Effect of hypoxia induced by starch microspheres.
    Forsberg JO; Jung B; Larsson B
    Acta Radiol Oncol Radiat Phys Biol; 1978; 17(6):485-96. PubMed ID: 735853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation response modified by degradable starch microspheres. Experiments on the rat's foot.
    Forsberg JO; Jung B; Larsson B
    Acta Radiol Oncol Radiat Phys Biol; 1978; 17(3):199-208. PubMed ID: 696409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxic radioprotection by temporary intestinal ischemia: degradable starch microsphere embolization in the cat.
    Lote K
    AJR Am J Roentgenol; 1981 Nov; 137(5):909-14. PubMed ID: 6794340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation-induced changes in glomerular and tubular cell kinetics and morphology following irradiation of a single kidney in the pig.
    Robbins ME; Bonsib SM; Soranson JA; Wilson GD; Ikeda A; Rezvani M; Golding SJ; Whitehouse E; Hopewell JW
    Int J Radiat Oncol Biol Phys; 1995 Jul; 32(4):1071-81. PubMed ID: 7607928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdominal radiation response modified by hypoxia after intra-aortal injection of starch microspheres. Experiments in the rat.
    Forsberg JO; Jung B
    Acta Radiol Oncol Radiat Phys Biol; 1978; 17(5):353-61. PubMed ID: 726944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective effect of hypoxia against radiation induced fibrosis in the rat gut.
    Forsberg JO; Jiborn H; Jung B
    Acta Radiol Oncol Radiat Phys Biol; 1979; 18(1):65-75. PubMed ID: 433659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced uptake of actinomycin D in the dog kidney by simultaneous injection of degradable starch microspheres into the renal artery.
    Tuma RF; Forsberg JO; Agerup B
    Cancer; 1982 Jul; 50(1):1-5. PubMed ID: 7083112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual radiation-induced damage to the kidney of the pig as assayed by retreatment.
    Robbins ME; Bywaters T; Rezvani M; Golding SJ; Hopewell JW
    Int J Radiat Biol; 1991 Dec; 60(6):917-28. PubMed ID: 1682404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation injury in the neonatal canine kidney. II. Quantitative morphology.
    Eisenbrandt DL; Phemister RD
    Lab Invest; 1978 Mar; 38(3):225-31. PubMed ID: 633847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional changes in the pig kidney following irradiation with fractionated doses of fast neutrons (42 MeVd-->Be).
    Robbins ME; Barnes DW; Hopewell JW; Knowles JF; Rezvani M; Sansom JM
    Br J Radiol; 1992 Oct; 65(778):910-7. PubMed ID: 1422666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dose local kidney irradiation inhibits progression of experimental crescentic nephritis by promoting apoptosis.
    Liu D; Nazneen A; Taguchi T; Razzaque MS
    Am J Nephrol; 2008; 28(4):555-68. PubMed ID: 18239382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative biological effectiveness of fractionated doses of fast neutrons (42 MeVd----Be) for normal tissues in the pig. IV. Effects on renal function.
    Robbins ME; Barnes DW; Campling D; Hopewell JW; Knowles JF; Sansom JM; Simmonds RH
    Br J Radiol; 1991 Sep; 64(765):823-30. PubMed ID: 1913046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Quantification of Delayed Radiation-Induced Organ Damage in Highly Irradiated Rats With Bone Marrow Protection: Effect of Radiation Dose and Organ Sensitivity.
    Boittin FX; Martigne P; Mayol JF; Denis J; Raffin F; Coulon D; Grenier N; Drouet M; Hérodin F
    Health Phys; 2015 Aug; 109(2):134-44. PubMed ID: 26107434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental and clinical studies of degradable starch microspheres in the treatment of hepatic neoplasm: Part 1. Experimental study].
    Yamada T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1995 Aug; 55(9):663-9. PubMed ID: 7478952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation protection of the normal kidney by selective arterial infusions.
    Steckel RJ; Collins JD; Snow HD; Lagasse LD; Barenfus M; Anderson DP; Weisenburger T; Hauskins LA; Ross NA
    Cancer; 1974 Oct; 34(4):1046-58. PubMed ID: 4607638
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional and morphologic damage in the neonatally irradiated canine kidney.
    Peneyra RS; Jaenke RS
    Radiat Res; 1985 Nov; 104(2 Pt 1):166-77. PubMed ID: 4080973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term results of selective renal shielding in patients undergoing total body irradiation in preparation for bone marrow transplantation.
    Lawton CA; Cohen EP; Murray KJ; Derus SW; Casper JT; Drobyski WR; Horowitz MM; Moulder JE
    Bone Marrow Transplant; 1997 Dec; 20(12):1069-74. PubMed ID: 9466280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Radioprotective action of gas hypoxia (8%) in local irradiation of the kidneys].
    Ostapenko VV; Waĭnson AA
    Fiziol Zh (1978); 1992; 38(5):67-9. PubMed ID: 1305086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.