These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42 related articles for article (PubMed ID: 4096428)
1. [Morphine tolerance of the tissues after epidural administration]. Semenikhin AA; Kaminskiĭ IuV Anesteziol Reanimatol; 1985; (6):52-4. PubMed ID: 4096428 [No Abstract] [Full Text] [Related]
2. Proteomic analysis of spinal protein expression in rats exposed to repeated intrathecal morphine injection. Shui HA; Ho ST; Wang JJ; Wu CC; Lin CH; Tao YX; Liaw WJ Proteomics; 2007 Mar; 7(5):796-803. PubMed ID: 17295356 [TBL] [Abstract][Full Text] [Related]
3. Tissue reaction of morphine applied to the epidural space of dogs. King FG; Baxter AD; Mathieson G Can Anaesth Soc J; 1984 May; 31(3 Pt 1):268-71. PubMed ID: 6722620 [TBL] [Abstract][Full Text] [Related]
4. Insights into morphine-induced plasticity and spinal tolerance. Taylor BK Pain; 2005 Mar; 114(1-2):1-2. PubMed ID: 15733624 [No Abstract] [Full Text] [Related]
5. Tolerance to the antinociceptive properties of morphine in the rat spinal cord: alteration of calcitonin gene-related peptide-like immunostaining and receptor binding sites. Ménard DP; van Rossum D; Kar S; Jolicoeur FB; Jhamandas K; Quirion R J Pharmacol Exp Ther; 1995 May; 273(2):887-94. PubMed ID: 7752094 [TBL] [Abstract][Full Text] [Related]
6. Involvement of the p53 tumor-suppressor protein in the development of antinociceptive tolerance to morphine. Tan-No K; Shimoda M; Watanabe K; Nakagawasai O; Niijima F; Kanno S; Ishikawa M; Bakalkin G; Tadano T Neurosci Lett; 2009 Feb; 450(3):365-8. PubMed ID: 19084050 [TBL] [Abstract][Full Text] [Related]
7. [Pathological findings in a patient after long-term epidural administration of morphine]. Fukuuchi A; Yokoyamo K Masui; 1984 Nov; 33(11):1242-5. PubMed ID: 6520924 [No Abstract] [Full Text] [Related]
8. Spinal cord tissue culture models for analyses of opioid analgesia, tolerance and plasticity. Crain SM NIDA Res Monogr; 1984; 54():260-92. PubMed ID: 6099874 [No Abstract] [Full Text] [Related]
9. Changes in G proteins genes expression in rat lumbar spinal cord support the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia. Javan M; Ahmadiani A; Motamadi F; Kazemi B Neurosci Res; 2005 Nov; 53(3):250-6. PubMed ID: 16055216 [TBL] [Abstract][Full Text] [Related]
10. The spinal nitric oxide involved in the inhibitory effect of midazolam on morphine-induced analgesia tolerance. Cao JL; Ding HL; He JH; Zhang LC; Duan SM; Zeng YM Pharmacol Biochem Behav; 2005 Mar; 80(3):493-503. PubMed ID: 15740792 [TBL] [Abstract][Full Text] [Related]
11. [The use of morphine in the spinal cord area]. Károvits J Orv Hetil; 1986 Jan; 127(2):63-8. PubMed ID: 3753752 [No Abstract] [Full Text] [Related]
12. Differential expression of L- and N-type voltage-sensitive calcium channels in the spinal cord of morphine+nimodipine treated rats. Verma D; Gupta YK; Parashar A; Ray SB Brain Res; 2009 Jan; 1249():128-34. PubMed ID: 18996361 [TBL] [Abstract][Full Text] [Related]
13. Prolonged spinal nerve involvement after epidural anesthesia with etidocaine. Ramanathan S; Chalon J; Richards M; Patel C; Turndorf H Anesth Analg; 1978; 57(3):361-4. PubMed ID: 566055 [No Abstract] [Full Text] [Related]
14. Clinical observations suggesting a changing site of action during induction and recession of spinal and epidural anesthesia. Urban BJ Anesthesiology; 1973 Nov; 39(5):496-503. PubMed ID: 4746055 [No Abstract] [Full Text] [Related]
15. Effect of chronic administration of morphine on the expression of bovine adrenal medulla 22-like immunoreactivity in the spinal cord of rats. Chen P; Liu Y; Hong Y Eur J Pharmacol; 2008 Jul; 589(1-3):110-3. PubMed ID: 18577380 [TBL] [Abstract][Full Text] [Related]
16. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Mika J; Wawrzczak-Bargiela A; Osikowicz M; Makuch W; Przewlocka B Brain Behav Immun; 2009 Jan; 23(1):75-84. PubMed ID: 18684397 [TBL] [Abstract][Full Text] [Related]
17. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Narita M; Suzuki M; Narita M; Niikura K; Nakamura A; Miyatake M; Yajima Y; Suzuki T Neuroscience; 2006; 138(2):609-19. PubMed ID: 16417975 [TBL] [Abstract][Full Text] [Related]
18. Central glucocorticoid receptors modulate the expression of spinal cannabinoid receptors induced by chronic morphine exposure. Lim G; Wang S; Mao J Brain Res; 2005 Oct; 1059(1):20-7. PubMed ID: 16150424 [TBL] [Abstract][Full Text] [Related]
19. A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Cui Y; Liao XX; Liu W; Guo RX; Wu ZZ; Zhao CM; Chen PX; Feng JQ Brain Behav Immun; 2008 Jan; 22(1):114-23. PubMed ID: 17919885 [TBL] [Abstract][Full Text] [Related]
20. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. Shimoyama N; Shimoyama M; Davis AM; Monaghan DT; Inturrisi CE J Pharmacol Exp Ther; 2005 Feb; 312(2):834-40. PubMed ID: 15388787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]