These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4096719)

  • 1. Uptake of proline by brushborder vesicles isolated from human kidney cortex.
    Foreman JW; McNamara PD; Pepe LM; Ginkinger K; Segal S
    Biochem Med; 1985 Dec; 34(3):304-9. PubMed ID: 4096719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenic uptake of D-imino acids by luminal membrane vesicles from rabbit kidney proximal tubule.
    Røigaard-Petersen H; Jacobsen C; Jessen H; Mollerup S; Sheikh MI
    Biochim Biophys Acta; 1989 Sep; 984(2):231-7. PubMed ID: 2765551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium gradient dependence of proline and glycine uptake in rat renal brush-border membrane vesicles.
    McNamara PD; Pepe LM; Segal S
    Biochim Biophys Acta; 1979 Sep; 556(1):151-60. PubMed ID: 476115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline and glycine uptake by renal brushborder membrane vesicles.
    McNamara PD; Ozegović B; Pepe LM; Segal S
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4521-5. PubMed ID: 12509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal transport of neutral amino acids. Demonstration of Na+-independent and Na+-dependent electrogenic uptake of L-proline, hydroxy-L-proline and 5-oxo-L-proline by luminal-membrane vesicles.
    Røigaard-Petersen H; Sheikh MI
    Biochem J; 1984 May; 220(1):25-33. PubMed ID: 6743264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-proline transport by newborn rat kidney brush-border membrane vesicles.
    Goldmann DR; Roth KS; Langfitt TW; Segal S
    Biochem J; 1979 Jan; 178(1):253-6. PubMed ID: 435284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate transport by brushborder membranes from superficial and juxtamedullary cortex.
    Turner ST; Dousa TP
    Kidney Int; 1985 Jun; 27(6):879-85. PubMed ID: 4021318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles.
    Rajendran VM; Barry JA; Kleinman JG; Ramaswamy K
    J Biol Chem; 1987 Nov; 262(31):14974-7. PubMed ID: 2822708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+ gradient-dependent glycine uptake in basolateral membrane vesicles from the dog kidney.
    Schwab SJ; Hammerman MR
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F338-45. PubMed ID: 4037088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of a role of gamma-glutamyl transpeptidase in the transport of amino acids by rat renal brushborder membrane vesicles.
    Hsu BY; Foreman JW; Corcoran SM; Ginkinger K; Segal S
    J Membr Biol; 1984; 80(2):167-73. PubMed ID: 6148423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cystine loading and cystine dimethylester on renal brushborder membrane transport.
    Foreman JW; Benson L
    Biosci Rep; 1990 Oct; 10(5):455-9. PubMed ID: 2282372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-dependent protein kinases modulate proline transport across the renal brush-border membrane.
    Zelikovic I; Przekwas J
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F155-62. PubMed ID: 7840241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride and membrane potential dependence of sodium ion-proline symport.
    Chesney RW; Zelikovic I; Budreau A; Randle D
    J Am Soc Nephrol; 1991 Oct; 2(4):885-93. PubMed ID: 1751792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton gradient-dependent renal transport of glycine: evidence for vesicle studies.
    Røigaard-Petersen H; Jessen H; Mollerup S; Jørgensen KE; Jacobsen C; Sheikh MI
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F388-96. PubMed ID: 2155542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the uptake of biotin by the rat renal tubule.
    Spencer PD; Roth KS
    Biochem Med Metab Biol; 1988 Oct; 40(2):95-100. PubMed ID: 3190927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex.
    Russel FG; van der Linden PE; Vermeulen WG; Heijn M; van Os CH; van Ginneken CA
    Biochem Pharmacol; 1988 Jul; 37(13):2639-49. PubMed ID: 3390224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles.
    Scalera V; Corcelli A; Frassanito A; Storelli C
    Biochim Biophys Acta; 1987 Sep; 903(1):1-10. PubMed ID: 3651446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of glycine by human kidney cortex.
    Roth KS; Holtzapple P; Genel M; Segal S
    Metabolism; 1979 Jun; 28(6):677-82. PubMed ID: 449705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.