BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4096906)

  • 21. Manganese and calcium transport in mitochondria: implications for manganese toxicity.
    Gavin CE; Gunter KK; Gunter TE
    Neurotoxicology; 1999; 20(2-3):445-53. PubMed ID: 10385903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria.
    Hughes BP; Exton JH
    Biochem J; 1983 Jun; 212(3):773-82. PubMed ID: 6192809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat.
    Sasaki N; Dayanithi G; Shibuya I
    Cell Calcium; 2005 Jan; 37(1):45-56. PubMed ID: 15541463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of alloxan and streptozotocin on calcium transport in isolated mouse liver mitochondria.
    Nelson L; Boquist L
    Cell Calcium; 1982 May; 3(2):191-8. PubMed ID: 6214312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of a new calcium ion antagonist on cellular uptake and mitochondrial efflux of calcium ions.
    Deana R; Panato L; Cancellotti FM; Quadro G; Galzigna L
    Biochem J; 1984 Mar; 218(3):899-905. PubMed ID: 6721841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of the oxidation states of manganese in brain, liver, and heart mitochondria.
    Gunter TE; Miller LM; Gavin CE; Eliseev R; Salter J; Buntinas L; Alexandrov A; Hammond S; Gunter KK
    J Neurochem; 2004 Jan; 88(2):266-80. PubMed ID: 14690515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the relationship between the uncoupler-induced efflux of K+ from heart mitochondria and the oxidation-reduction state of pyridine nucleotides.
    Jung DW; Brierley GP
    J Biol Chem; 1981 Oct; 256(20):10490-6. PubMed ID: 6169721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spermine, another specific allosteric activator of calcium uptake in rat liver mitochondria.
    Kröner H
    Arch Biochem Biophys; 1988 Nov; 267(1):205-10. PubMed ID: 3196026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles.
    Low W; Brawarnick N; Rahamimoff H
    Biochem Pharmacol; 1991 Sep; 42(8):1537-43. PubMed ID: 1656989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of manganese on substrate oxidation and oxidative phoshorylation in rat liver mitochondria.
    Byczkowski J; Zychliński L; Stachowiak M; Byczkowski S
    Pol J Pharmacol Pharm; 1976; 28(4):323-7. PubMed ID: 981021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Ca2+, Sr2+, and Mn2+ fluxes in mitochondria of the perfused rat heart.
    Hunter DR; Komai H; Haworth RA; Jackson MD; Berkoff HA
    Circ Res; 1980 Nov; 47(5):721-7. PubMed ID: 6774832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria.
    Al-Nasser I; Crompton M
    Biochem J; 1986 Oct; 239(1):31-40. PubMed ID: 3800984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of calcium uptake by small amounts of mitochondria from pancreatic islets to study mitochondrial respiration: the effects of diazoxide and sodium.
    MacDonald MJ
    Biochem Int; 1984 Jun; 8(6):771-8. PubMed ID: 6383402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutritional effects on mitochondrial bioenergetics. Alterations in calcium uptake by rat liver mitochondria.
    Ferreira J; Gil L
    Biochem Int; 1987 Jul; 15(1):95-109. PubMed ID: 3453691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the role of mitochondria in cell injury caused by vanadate-induced Ca2+ overload.
    Richelmi P; Mirabelli F; Salis A; Finardi G; Berte F; Bellomo G
    Toxicology; 1989 Jul; 57(1):29-44. PubMed ID: 2749742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathways for Ca2+ efflux in heart and liver mitochondria.
    Rizzuto R; Bernardi P; Favaron M; Azzone GF
    Biochem J; 1987 Sep; 246(2):271-7. PubMed ID: 3689311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Na+ releases Ca2+ from liver, kidney and lung mitochondria.
    Haworth RA; Hunter DR; Berkoff HA
    FEBS Lett; 1980 Feb; 110(2):216-8. PubMed ID: 7371826
    [No Abstract]   [Full Text] [Related]  

  • 39. Interaction of metallochromic indicators with calcium sequestering organelles.
    Ohnishi ST
    Biochim Biophys Acta; 1979 Jun; 585(2):315-9. PubMed ID: 454685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of N-ethylmaleimide on the limited uptake of Ca2+, Mn2+, and Sr2+ by rat liver mitochondria.
    Pfeiffer DR; Kauffman RF; Lardy HA
    J Biol Chem; 1978 Jun; 253(12):4165-71. PubMed ID: 26681
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.