These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1. Purification and properties of a low molecular weight protein factor of mitochondrial energy-linked functions. You KS; Hatefi Y Biochim Biophys Acta; 1976 Mar; 423(3):398-412. PubMed ID: 4097 [TBL] [Abstract][Full Text] [Related]
3. [The effect of oxidazable substrates and ATP on the sensitivity of certain energy-dependent functions submitochondrial particles to phospholipases A, C and D]. Kupriianov VV; Luzikov VN Biokhimiia; 1975; 40(4):869-74. PubMed ID: 1116 [TBL] [Abstract][Full Text] [Related]
4. Effects of quercetin and F1 inhibitor on mitochondrial ATPase and energy-linked reactions in submitochondrial particles. Lang DR; Racker E Biochim Biophys Acta; 1974 Feb; 333(2):180-6. PubMed ID: 19400030 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA; Berden JA; Kemp A; Slater EC Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915 [TBL] [Abstract][Full Text] [Related]
6. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles. Roberton AM; Holloway CT; Knight IG; Beechey RB Biochem J; 1968 Jul; 108(3):445-56. PubMed ID: 4299126 [TBL] [Abstract][Full Text] [Related]
7. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Scholes TA; Hinkle PC Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893 [TBL] [Abstract][Full Text] [Related]
8. Stimulation by arsenate of ATP-driven energy-linked reduction of NAD + by succinate. Huang CH; Mitchell RA Biochem Biophys Res Commun; 1971 Sep; 44(5):1102-8. PubMed ID: 4334272 [No Abstract] [Full Text] [Related]
9. Control of the rate of reverse electron transport in submitochondrial particles by the free energy. Rottenberg H; Gutman M Biochemistry; 1977 Jul; 16(14):3220-7. PubMed ID: 196630 [No Abstract] [Full Text] [Related]
10. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Hatefi Y; Hanstein WG; Galante Y; Stiggall DL Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889 [TBL] [Abstract][Full Text] [Related]
11. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
12. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M; Knox BE; Tsong TY Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470 [TBL] [Abstract][Full Text] [Related]
13. [Halidor, 1-benzyl-1-(3'-dimethylaminopropoxy)-cyclohep tane fumarate as an uncoupler and inhibitor of the respiratory chain]. Belous AM; Lemeshko VV; Iasaĭtis AA Biokhimiia; 1976 May; 41(5):881-5. PubMed ID: 192335 [TBL] [Abstract][Full Text] [Related]
14. Selective disaggregation of the H+-translocating ATPase. Isolation of two discrete complexes of the rutamycin-insensitive ATPase differing in mitochondrial membrane-binding properties. Fisher RJ; Liang AM; Sundstrom GC J Biol Chem; 1981 Jan; 256(2):707-15. PubMed ID: 6450207 [TBL] [Abstract][Full Text] [Related]
15. Effect of iron deficiency on energy conservation in rat liver and skeletal muscle submitochondrial particles. Evans TC; Mackler B Biochem Med; 1985 Aug; 34(1):93-9. PubMed ID: 4052063 [TBL] [Abstract][Full Text] [Related]
16. Uncoupling and specific inhibition of phosphoryl transfer reactions in mitochondria by antibiotic A20668. Reed PW; Lardy HA J Biol Chem; 1975 May; 250(10):3704-8. PubMed ID: 165181 [TBL] [Abstract][Full Text] [Related]
17. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate]. Kotliar AB; Vinogradov AD Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801 [TBL] [Abstract][Full Text] [Related]
18. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles. Taggart WV; Sanadi DR Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058 [No Abstract] [Full Text] [Related]
19. Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. Hatefi Y; Galante YM Proc Natl Acad Sci U S A; 1977 Mar; 74(3):846-50. PubMed ID: 15255 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of reduced triphosphopyridine nucleotide by submitochondrial particles from beef heart. Hatefi Y Biochem Biophys Res Commun; 1973 Feb; 50(4):978-84. PubMed ID: 4144123 [No Abstract] [Full Text] [Related] [Next] [New Search]