These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 40972)

  • 1. The modification of the catalytic chain sulfhydryl group of aspartate transcarbamylase with mercurinitrophenols.
    Evans DR; Lipscomb WN
    J Biol Chem; 1979 Nov; 254(21):10679-85. PubMed ID: 40972
    [No Abstract]   [Full Text] [Related]  

  • 2. The location and local environment of the active sites of aspartate transcarbamylase.
    Baron MH; Lipscomb WN; Evans DR
    J Biol Chem; 1979 Nov; 254(21):10686-93. PubMed ID: 387753
    [No Abstract]   [Full Text] [Related]  

  • 3. Aspartate transcarbamylase. A study of possible roles for the sulfhydryl group at the active site.
    Jacobson GR; Stark GR
    J Biol Chem; 1973 Dec; 248(23):8003-14. PubMed ID: 4584821
    [No Abstract]   [Full Text] [Related]  

  • 4. The nature and reactivity of the "essential" thiol in rabbit muscle creatine kinase III (EC 2.7.3.2).
    Fawcett AH; Keto AI; Mackerras P; Hamilton SE; Zerner B
    Biochem Biophys Res Commun; 1982 Jul; 107(1):302-6. PubMed ID: 7126210
    [No Abstract]   [Full Text] [Related]  

  • 5. Three-dimensional structures at 5.5 A resolution and regulatory processes in aspartate transcarbamylase from E. coli.
    Lipscomb WN; Evans DR; Edwards BF; Warren SG; Pastra-Landis S; Wiley DC
    J Supramol Struct; 1974; 2(2-4):82-98. PubMed ID: 4612257
    [No Abstract]   [Full Text] [Related]  

  • 6. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog.
    Wu CW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1400-8. PubMed ID: 4572360
    [No Abstract]   [Full Text] [Related]  

  • 7. Interactions of ionizable groups in Escherichia coli aspartate transcarbamylase with adenosine and cytidine 5'-triphosphates.
    Burz DS; Allewell NM
    Biochemistry; 1982 Dec; 21(26):6647-55. PubMed ID: 6760892
    [No Abstract]   [Full Text] [Related]  

  • 8. Aspartate transcarbamylase from Escherichia coli. The use of pyridoxal 5'-phosphate as a probe in the active site.
    Greenwell P; Jewett SL; Stark GR
    J Biol Chem; 1973 Sep; 248(17):5994-6001. PubMed ID: 4580049
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0.
    Hsuanyu Y; Wedler FC
    Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential sulfhydryl group of ornithine transcarbamylases. pH dependence of the spectra of its 2-mercuri-4-nitrophenol derivative.
    Marshall M; Cohen PP
    J Biol Chem; 1980 Aug; 255(15):7296-300. PubMed ID: 6771287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complex between the catalytic and regulatory subunits of aspartate transcarbamylase.
    Chan WW; Mort JS
    J Biol Chem; 1973 Nov; 248(21):7614-6. PubMed ID: 4583358
    [No Abstract]   [Full Text] [Related]  

  • 12. An aspartate transcarbamylase lacking catalytic subunit interactions. II. Regulatory subunits are responsible for the lack of co-operative interactions between catalytic sites. Drastic feedback inhibition does not restore these interactions.
    Kerbiriou D; Hervé G
    J Mol Biol; 1973 Aug; 78(4):687-702. PubMed ID: 4587135
    [No Abstract]   [Full Text] [Related]  

  • 13. The nature of the altered allosteric behaviour of 2-thiouracil aspartate transcarbamylase.
    Howlett GJ; Beck CF
    J Mol Biol; 1977 Mar; 111(1):19-25. PubMed ID: 323496
    [No Abstract]   [Full Text] [Related]  

  • 14. A nuclear magnetic resonance study of the interaction of inhibitory nucleosides with Escherichia coli aspartate transcarbamylase and its regulatory subunit.
    London RE; Schmidt PG
    Biochemistry; 1974 Mar; 13(6):1170-9. PubMed ID: 4592470
    [No Abstract]   [Full Text] [Related]  

  • 15. Isolation and properties of a species produced by the partial dissociation of aspartate transcarbamylase from Escherichia coli.
    Evans DR; Pastra-Landis SC; Lipscomb WN
    J Biol Chem; 1975 May; 250(10):3571-83. PubMed ID: 1092675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intermediate complex in the dissociation of aspartate transcarbamylase.
    Evans DR; Pastra-Landis SC; Lipscomb WN
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1351-5. PubMed ID: 4598300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of aspartate transcarbamylase from Escherichia coli for the reverse direction of reaction.
    Foote J; Lipscomb WN
    J Biol Chem; 1981 Nov; 256(22):11428-33. PubMed ID: 7028733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercurial-promoted Zn2+ release from Escherichia coli aspartate transcarbamoylase.
    Hunt JB; Neece SH; Schachman HK; Ginsburg A
    J Biol Chem; 1984 Dec; 259(23):14793-803. PubMed ID: 6389552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic-regulatory subunit interactions and allosteric effects in aspartate transcarbamylase.
    Ladjimi MM; Kantrowitz ER
    J Biol Chem; 1987 Jan; 262(1):312-8. PubMed ID: 3539935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of cooperativity in aspartate transcarbamylase by nitration of a single tyrosine residue.
    Landfear SM; Evans DR; Lipscomb WN
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2654-8. PubMed ID: 26914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.