These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4098774)

  • 1. Biochemical conversion of partially cyclized squalene 2,3-oxide types to the lanosterol system. Views on the normal enzymic cyclization process.
    Van TAMELEN EE; Freed JH
    J Am Chem Soc; 1970 Dec; 92(24):7206-7. PubMed ID: 4098774
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of substrate structure in the initiation of enzymic cyclization of squalene 2,3-oxide. Studies with 2,3-cis-1'-norsqual ene 2,3-oxide and 2,3-trans-1'-norsqualene 2,3-oxide.
    Clayton RB; van Tamelen EE; Nadeau RG
    J Am Chem Soc; 1968 Jan; 90(3):820-1. PubMed ID: 5638313
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of A-B cis- and trans-19-norlanosterols by enzymic cyclization of 6'-norsqualene 2,3-oxide.
    van Tamelen EE; Smaal JA; Clayton RB
    J Am Chem Soc; 1971 Oct; 93(20):5279-81. PubMed ID: 5135874
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzymic cyclization of trans,trans,trans-18,19-dihydrosqualene 2,3-oxide.
    van Tamelen EE; Sharpless KB; Hanzlik R; Clayton RB; Burlingame AL; Wszolek PC
    J Am Chem Soc; 1967 Dec; 89(26):7150-1. PubMed ID: 6064361
    [No Abstract]   [Full Text] [Related]  

  • 5. Minimal substrate structural requirements for lanosterol-squalene 2,3-oxide cyclase action. 10'-norsqualene 2,3-oxide.
    van Tamelen EE; Hanzlik RP; Clayton RB; Burlingame AL
    J Am Chem Soc; 1970 Apr; 92(7):2137-9. PubMed ID: 5435278
    [No Abstract]   [Full Text] [Related]  

  • 6. The nature of the hydrogen migrations in the cyclization of squalene oxide to lanosterol.
    Jayme M; Schaefer PC; Richards JH
    J Am Chem Soc; 1970 Apr; 92(7):2059-64. PubMed ID: 5435274
    [No Abstract]   [Full Text] [Related]  

  • 7. 2,3-iminosqualene, a potent inhibitor of the enzymic cyclization of 2,3-oxidosqualene to sterols.
    Corey EJ; Ortiz de Montellano PR; Lin K; Dean PD
    J Am Chem Soc; 1967 May; 89(11):2797-8. PubMed ID: 6043808
    [No Abstract]   [Full Text] [Related]  

  • 8. Assay of the possible organization of particle-bound enzymes with squalene synthetase and squalene oxidocyclase systems.
    Etemadi AH; Popják G; Cornforth JW
    Biochem J; 1969 Feb; 111(4):445-51. PubMed ID: 4388240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure effect on squalene-2,3-oxide cyclization in fish.
    Phleger CF; Benson AA; Yayanos AA
    Comp Biochem Physiol B; 1973 May; 45(1):241-7. PubMed ID: 4719990
    [No Abstract]   [Full Text] [Related]  

  • 10. Dehydrogenation and dealkylation of various sterols by Tetrahymena pyriformis.
    Mallory FB; Conner RL
    Lipids; 1971 Mar; 6(3):149-53. PubMed ID: 4102490
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymic conversion of squalene 2,3-oxide to lanosterol and cholesterol.
    Van Tamelen EE; Willett JD; Clayton RB; Lord KE
    J Am Chem Soc; 1966 Oct; 88(20):4752-4. PubMed ID: 5918048
    [No Abstract]   [Full Text] [Related]  

  • 12. Formation of the C ring in the lanosterol biosynthesis from squalene.
    Hess BA
    Org Lett; 2003 Jan; 5(2):165-7. PubMed ID: 12529131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanosterol synthase in dicotyledonous plants.
    Suzuki M; Xiang T; Ohyama K; Seki H; Saito K; Muranaka T; Hayashi H; Katsube Y; Kushiro T; Shibuya M; Ebizuka Y
    Plant Cell Physiol; 2006 May; 47(5):565-71. PubMed ID: 16531458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol biosynthesis in the echinoderm Asterias rubens.
    Smith AG; Goad LJ
    Biochem J; 1975 Jan; 146(1):25-33. PubMed ID: 1147897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Oxidative cyclization of squalene. Biosynthesis of sterols].
    Yamamoto S
    Tanpakushitsu Kakusan Koso; 1970 Feb; 15(2):82-92. PubMed ID: 4912088
    [No Abstract]   [Full Text] [Related]  

  • 16. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus.
    Rohmer M; Bouvier P; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):557-60. PubMed ID: 6780348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis.
    Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL
    Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Veen M; Stahl U; Lang C
    FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of lanosterol biosynthesis from squalene 2,3-oxide.
    van Tamelen EE; Willett JD; Clayton RB
    J Am Chem Soc; 1967 Jun; 89(13):3371-3. PubMed ID: 6042776
    [No Abstract]   [Full Text] [Related]  

  • 20. Nonenzymic polycyclization of analogues of oxidosqualene with a preformed C-ring.
    Winne JM; De Clercq PJ; Milanesio M; Pattison P; Viterbo D
    Org Biomol Chem; 2008 Jun; 6(11):1918-25. PubMed ID: 18480904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.