These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 4098895)

  • 1. Identity of coupling factor 2 and factor B.
    Racker E; Fessenden-Raden JM; Kandrach MA; Lam KW; Sanadi DR
    Biochem Biophys Res Commun; 1970 Dec; 41(6):1474-9. PubMed ID: 4098895
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of coupling factor 3 on oxidative phosphorylation.
    Fessenden JM; Dannenberg MA; Racker E
    Biochem Biophys Res Commun; 1966 Oct; 25(1):54-9. PubMed ID: 4291349
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation.
    Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156
    [No Abstract]   [Full Text] [Related]  

  • 4. Preservation of energy coupling in submitochondrial particles during extraction and reinsertion of cytochrome C.
    Arion WJ; Wright BJ
    Biochem Biophys Res Commun; 1970 Aug; 40(3):594-9. PubMed ID: 4321657
    [No Abstract]   [Full Text] [Related]  

  • 5. [Evidence for the mechanism of action of sodium ethacrynate on rat liver mitochondria].
    Foucher B; Geyssant A; Goldschmidt D; Gaudemer Y
    Eur J Biochem; 1969 May; 9(1):63-9. PubMed ID: 4306665
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 7. A complex of mitochondrial factor A and a new factor involved in oxidative phosphorylation.
    Sani BP; Lam KW; Sanadi DR
    Biochem Biophys Res Commun; 1970 May; 39(3):444-9. PubMed ID: 4316208
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence for P/O ratios approaching 6 in mitochondrial oxidative phosphorylation.
    Smith AL; Hansen M
    Biochem Biophys Res Commun; 1964 Apr; 15(5):431-5. PubMed ID: 4283980
    [No Abstract]   [Full Text] [Related]  

  • 9. EFFECT OF IMIDAZOLE ON ADENOSINE TRIPHOSPHATASE, ADENOSINE TRIPHOSPHATE-INORGANIC PHOSPHATE EXCHANGE REACTION AND OXIDATIVE PHOSPHORYLATION.
    CONOVER TE; GONZE J; ESTABROOK RW
    Biochim Biophys Acta; 1964 Mar; 81():587-90. PubMed ID: 14170329
    [No Abstract]   [Full Text] [Related]  

  • 10. On the possible role of structural protein in the binding and translocation of adenine nucleotides in mitochondria.
    Palmieri F; Klingenberg M
    Biochim Biophys Acta; 1967 May; 131(3):582-5. PubMed ID: 4292161
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential effects of adenylyl imidodiphosphate on adenosine triphosphate synthesis and the partial reactions of oxidative phosphorylation.
    Penefsky HS
    J Biol Chem; 1974 Jun; 249(11):3579-85. PubMed ID: 4364660
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition by avidin of the ATP-Pi enchange activities associated with preparations of energy transfer factors A and A-D.
    You K; Hatefi Y
    Biochem Biophys Res Commun; 1973 May; 52(2):343-9. PubMed ID: 4351134
    [No Abstract]   [Full Text] [Related]  

  • 13. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphorylation of bound adenosine monophosphate in the electron transfer particle, driven by succinate.
    Ozawa T; MacLennan DH
    Biochem Biophys Res Commun; 1965 Dec; 21(6):537-42. PubMed ID: 5879462
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemical properties of mitochondria from Candida albicans.
    Yamaguchi H; Kanda Y; Iwata K
    Sabouraudia; 1971 Nov; 9(3):221-30. PubMed ID: 4109209
    [No Abstract]   [Full Text] [Related]  

  • 16. Incorporation of inorganic P-32 into a phosphorylated derivative of NAD in rat-liver mitochondria by ascorbate.
    Utsumi K; Inaba K
    Biochim Biophys Acta; 1965 Jun; 99(3):556-7. PubMed ID: 4284667
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation.
    Lenaz G
    Biochem Biophys Res Commun; 1965 Oct; 21(2):170-5. PubMed ID: 4286024
    [No Abstract]   [Full Text] [Related]  

  • 18. A second form of energy transfer factor B and a new factor (factor C) of mitochondrial oxidative phosphorylation.
    Lam KW; Karunakaran ME; Sanadi DR
    Biochem Biophys Res Commun; 1970 May; 39(3):437-43. PubMed ID: 4316207
    [No Abstract]   [Full Text] [Related]  

  • 19. Involvement of thiol function in the activity of energy transfer factor D of mitochondrial oxidative phosphorylation.
    Sani BP; Sanadi DR
    Arch Biochem Biophys; 1971 Nov; 147(1):351-2. PubMed ID: 4329865
    [No Abstract]   [Full Text] [Related]  

  • 20. Partial resolution of the enzymes catalyzine oxidative phosphorylation. XII. The H-2-18-O-inorganic phosphate and H-2-18-O-adenosine triphosphate exchange reactions in submitochondrial particles from beef heart.
    Hinkle PC; Penefsky HS; Racker E
    J Biol Chem; 1967 Apr; 242(8):1788-92. PubMed ID: 6024769
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.