BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 409919)

  • 21. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen].
    Pöller F; Sauerwein W; Rau D; Wagner FM; Olthoff K; Rassow J; Sack H
    Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beams.
    Roy SC; Sandison GA
    Med Phys; 2000 Aug; 27(8):1800-3. PubMed ID: 10984226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of a gas target neutron source for radiotherapy.
    Deluca PM; Torti RP; Chenevert GM; Detorie NA; Tesmer JR; Kelsey CA
    Phys Med Biol; 1978 Sep; 23(5):876-87. PubMed ID: 715003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator.
    Bading JR; Zeitz L; Laughlin JS
    Med Phys; 1982; 9(6):835-43. PubMed ID: 6819434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The production by 72 MeV protons of keV neutrons for 10B neutron capture therapy.
    Condé H; Crawford JF; Dahl B; Grusell E; Larsson B; Petterson CB; Reist H; Sjöstrand NG; Sornsuntisook O; Thuresson L
    Strahlenther Onkol; 1989 Apr; 165(4):340-2. PubMed ID: 2540542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy.
    Loi G; Dominietto M; Cannillo B; Ciocca M; Krengli M; Mones E; Negri E; Brambilla M
    Phys Med Biol; 2006 Feb; 51(3):695-702. PubMed ID: 16424589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unwanted radiation produced by leakage neutrons from medical electron accelerators.
    Ing H; Shore RA
    Med Phys; 1982; 9(1):34-6. PubMed ID: 6804770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A d(16) + Be fast neutron beam for therapy.
    Hough JH; Binns PJ
    Radiother Oncol; 1987 Sep; 10(1):71-5. PubMed ID: 3118420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutron energies in medical electron accelerator rooms.
    LaRiviere PD
    Med Phys; 1985; 12(6):769-75. PubMed ID: 4079870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.
    Followill DS; Stovall MS; Kry SF; Ibbott GS
    J Appl Clin Med Phys; 2003; 4(3):189-94. PubMed ID: 12841788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Neutron dosis in an 8-MeV linear accelerator and an 18-MeV betatron].
    Nemec HW; Roth J
    Rontgenpraxis; 1978 Mar; 31(3):70-5. PubMed ID: 418507
    [No Abstract]   [Full Text] [Related]  

  • 33. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV.
    Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM
    Radiat Prot Dosimetry; 2011 Nov; 147(4):498-511. PubMed ID: 21233098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdosimetry of a 42 MeV therapy neutron beam.
    Kliauga P; Horton J; Stafford P
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):845-8. PubMed ID: 2493437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrons from high-energy x-ray medical accelerators: an estimate of risk to the radiotherapy patient.
    Nath R; Epp ER; Laughlin JS; Swanson WP; Bond VP
    Med Phys; 1984; 11(3):231-41. PubMed ID: 6429495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.