These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4100090)

  • 1. Rapid detection of small numbers of airborne bacteria by a membrane filter fluorescent-antibody technique.
    Jost R; Fey H
    Appl Microbiol; 1970 Dec; 20(6):861-5. PubMed ID: 4100090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved large-volume sampler for the collection of bacterial cells from aerosol.
    White LA; Hadley DJ; Davids DE; Naylor R
    Appl Microbiol; 1975 Mar; 29(3):335-9. PubMed ID: 803820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sodium fluorescein and plating medium on recovery of irradiated Escherichia coli and Serratia marcescens from aerosols.
    Dorsey EL; Berendt RF; Neff EL
    Appl Microbiol; 1970 Nov; 20(5):834-8. PubMed ID: 4922085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological hazard from the exhaust of a high-vacuum sterilizer.
    Barbeito MS; Brookey EA
    Appl Environ Microbiol; 1976 Nov; 32(5):671-8. PubMed ID: 825044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A methodological study on testing and evaluating of filtration efficiency of canister against microbial aerosol].
    Wen ZB; Zhao JJ; Li JS; Wang J; Lu JC; Li N
    Zhonghua Yu Fang Yi Xue Za Zhi; 2009 Aug; 43(8):686-9. PubMed ID: 20021847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A MEMBRANE FILTER METHOD FOR THE DEMONSTRATION OF BACTERIA BY THE FLUORESCENT ANTIBODY TECHNIQUE. 2. THE APPLICATION OF THE METHOD FOR DETECTION OF SMALL NUMBERS OF BACTERIA IN WATER.
    DANIELSSON D; LAURELL G
    Acta Pathol Microbiol Scand; 1965; 63():604-8. PubMed ID: 14324668
    [No Abstract]   [Full Text] [Related]  

  • 7. Relationship between atmospheric temperature and survival of airborne bacteria.
    Ehrlich R; Miller S; Walker RL
    Appl Microbiol; 1970 Feb; 19(2):245-9. PubMed ID: 4985428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of bacterial filtration in various commercial air filters for hospital air conditioning.
    Furuhashi M
    Bull Tokyo Med Dent Univ; 1978 Sep; 25(3):147-55. PubMed ID: 359187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Protective effectiveness of fabric FPP-15 in relation to a bacterial aerosol].
    Bortkevich VS; Cherednichenko IA; Moroz AG
    Gig Sanit; 1982 Oct; (10):65-6. PubMed ID: 6757062
    [No Abstract]   [Full Text] [Related]  

  • 10. Versatile filter membrane for effective sampling and real-time quantitative detection of airborne pathogens.
    Yan S; Liu Q; Xing K; Liu Z; Guo H; Jiang W; Ma X; Yan M; Wang C; Liu X; Xing D
    J Hazard Mater; 2024 Aug; 474():134740. PubMed ID: 38805821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A freeze-tolerant solid medium for detection and sampling of air-borne microorganisms at subzero temperature.
    Won WD; Ross H
    Cryobiology; 1966; 3(2):88-93. PubMed ID: 5339319
    [No Abstract]   [Full Text] [Related]  

  • 12. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems.
    Nakamura H
    Bull Tokyo Med Dent Univ; 1987 Jun; 34(2):25-40. PubMed ID: 3127068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SINGLE-STAGE IMPACTION DEVICE FOR PARTICLE SIZING BIOLOGICAL AEROSOLS.
    MALLIGO JE; IDOINE LS
    Appl Microbiol; 1964 Jan; 12(1):32-6. PubMed ID: 14106937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of airborne microorganisms by filtering recycled air in a chick hatcher.
    Avens JS; Quarles CL; Fagerberg DJ
    Poult Sci; 1975 Mar; 54(2):479-82. PubMed ID: 1101244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane filter-fluorescent-antibody method for detection and enumeration of bacteria in water.
    Guthrie RK; Reeder DJ
    Appl Microbiol; 1969 Mar; 17(3):399-401. PubMed ID: 4888861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the risk of infectious aerosols leaking to the environment from BSL-3 laboratory HEPA air filtration systems using model bacterial aerosols.
    Wen Z; Yang W; Li N; Wang J; Hu L; Li J; Yin Z; Zhang K; Dong X
    Particuology; 2014 Apr; 13():82-87. PubMed ID: 38620193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of Streptococcus mutans by the membrane filter fluorescent antibody technique.
    Jablon JM; Ferrer T; Zinner DD
    Arch Oral Biol; 1974 Oct; 19(10):929-34. PubMed ID: 4614763
    [No Abstract]   [Full Text] [Related]  

  • 19. [RoTrac capillary pore membranes for laboratory filtration. I. Degermination filtration].
    Gemende B; Heinrich B; Selassie GG; Knaack D; Witzleb W
    Zentralbl Hyg Umweltmed; 1992 Aug; 193(2):188-97. PubMed ID: 1388619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [On the isolation of air microorganisms by means of fine pore filters].
    Petras E
    Arch Mikrobiol; 1966 Nov; 55(2):93-109. PubMed ID: 4966188
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.