These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4103665)

  • 21. Changes in plasma renin substrate, plasma and renal renin, and plasma osmolarity during glycerol-induced acute renal failure in rabbits.
    Torres VE; Strong CG; Romero JC; Wilson DM
    Mayo Clin Proc; 1975 Mar; 50(3):111-20. PubMed ID: 1117758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renal tubular and papillary necrosis after dehydration in infancy.
    Banister A; Hatcher GW
    Arch Dis Child; 1973 Jan; 48(1):36-40. PubMed ID: 4685592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenolic acids in experimental uremia. I. Potential role of phenolic acids in the neurological manifestations of uremia.
    Record NB; Prichard JW; Gallagher BB; Seligson D
    Arch Neurol; 1969 Oct; 21(4):387-94. PubMed ID: 5821002
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of potassium on the renin-angiotensin system and HgCl 2 -induced acute renal failure.
    Flamenbaum W; Kotchen TA; Nagle R; McNeil JS
    Am J Physiol; 1973 Feb; 224(2):305-11. PubMed ID: 4686486
    [No Abstract]   [Full Text] [Related]  

  • 25. Increased plasma protein binding of propranolol in rabbits with acute renal failure.
    Fichtl B; Gerdsmeier W
    Life Sci; 1981 Jan; 28(1):31-5. PubMed ID: 7219042
    [No Abstract]   [Full Text] [Related]  

  • 26. Failure of loading with sodium bicarbonate to protect against acute renal failure induced by mercuric chloride in the rat.
    Beaumont JE; Kotchen TA; Galla JH; Luke RG
    Clin Sci Mol Med; 1977 Aug; 53(2):149-54. PubMed ID: 891103
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanism of reduced GFR in rabbits with ischemic acute renal failure.
    Kim SJ; Lim YT; Kim BS; Cho SI; Woo JS; Jung JS; Kim YK
    Ren Fail; 2000 Mar; 22(2):129-41. PubMed ID: 10803759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of the nephron in acute renal failure: comparative regeneration following various forms of acute tubular injury.
    Cuppage FE; Tate A
    Pathol Microbiol (Basel); 1968; 32(6):327-44. PubMed ID: 5730209
    [No Abstract]   [Full Text] [Related]  

  • 29. Phenotype standardization for drug-induced kidney disease.
    Mehta RL; Awdishu L; Davenport A; Murray PT; Macedo E; Cerda J; Chakaravarthi R; Holden AL; Goldstein SL
    Kidney Int; 2015 Aug; 88(2):226-34. PubMed ID: 25853333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of varying sodium intake on blood pressure and renin-angiotensin system in subtotally nephrectomized rats.
    Ylitalo P; Hepp R; Möhring J; Gross F
    J Lab Clin Med; 1976 Nov; 88(5):807-16. PubMed ID: 978043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2.
    Gupta A; Rhodes GJ; Berg DT; Gerlitz B; Molitoris BA; Grinnell BW
    Am J Physiol Renal Physiol; 2007 Jul; 293(1):F245-54. PubMed ID: 17409278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma renin activity in folic acid induced acute renal failure.
    Helmchen U; Kneissler U; Fischbach H; Reifferscheid P; Schmidt U
    Klin Wochenschr; 1972 Aug; 50(16):797-8. PubMed ID: 5070373
    [No Abstract]   [Full Text] [Related]  

  • 33. Hyperglycaemia emerging during general anaesthesia induces rat acute kidney injury via impaired microcirculation, augmented apoptosis and inhibited cell proliferation.
    Efrati S; Berman S; Hamad RA; Siman-Tov Y; Chanimov M; Weissgarten J
    Nephrology (Carlton); 2012 Feb; 17(2):111-22. PubMed ID: 22066573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The renin-angiotensin system in acute renal failure in rats.
    Matthews PG; Morgan TO; Johnston CI
    Clin Sci Mol Med; 1974 Jul; 47(1):79-88. PubMed ID: 4369350
    [No Abstract]   [Full Text] [Related]  

  • 35. alpha-Melanocyte-simulating hormone and interleukin-10 do not protect the kidney against mercuric chloride-induced injury.
    Miyaji T; Hu X; Star RA
    Am J Physiol Renal Physiol; 2002 May; 282(5):F795-801. PubMed ID: 11934688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of angiotensin with disseminated intravascular coagulation: a possible mechanism in the genesis of acute renal failure.
    Whitaker AN; Bunce I; Nicoll P; Dowling SV
    Am J Pathol; 1973 Jul; 72(1):1-12. PubMed ID: 4352549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prolonged inhibition of angiotensin II attenuates glycerol-induced acute renal failure.
    Abdulkader RC; Yuki MM; Paiva AC; Marcondes M
    Braz J Med Biol Res; 1988; 21(2):233-9. PubMed ID: 3203159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute renal failure due to hypersensitivity interstitial nephritis induced by warfarin sodium.
    Volpi A; Ferrario GM; Giordano F; Antiga G; Battini G; Fabbri C; Meroni M; Sessa A
    Nephron; 1989; 52(2):196. PubMed ID: 2500616
    [No Abstract]   [Full Text] [Related]  

  • 40. The effect of high sodium intake and angiotensin antagonist in rabbits with severe and moderate hypertension induced by constriction of one renal artery.
    Romero JC; Holmes DR; Strong CG
    Circ Res; 1977 May; 40(5 Suppl 1):I17-23. PubMed ID: 870227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.