These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 410368)

  • 21. Metabolism of fensulfothion by a soil bacterium, Pseudomonas alcaligenes C1.
    Sheela S; Pai SB
    Appl Environ Microbiol; 1983 Aug; 46(2):475-9. PubMed ID: 6226243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3.
    Liu H; Zhang JJ; Wang SJ; Zhang XE; Zhou NY
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1107-14. PubMed ID: 16039612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro.
    Neal RA
    Biochem J; 1967 Apr; 103(1):183-91. PubMed ID: 4382289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organophosphorus pesticide ozonation and formation of oxon intermediates.
    Wu J; Lan C; Chan GY
    Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotransformation of the insecticide parathion by mouse brain.
    Soranno TM; Sultatos LG
    Toxicol Lett; 1992 Jan; 60(1):27-37. PubMed ID: 1539180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6.
    Ramu S; Seetharaman B
    J Environ Sci Health B; 2014; 49(1):23-34. PubMed ID: 24138465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae.
    Senthilkumar S; Anthonisamy A; Arunkumar S; Sivakumari V
    J Environ Sci Eng; 2011 Jan; 53(1):115-22. PubMed ID: 22324156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Urinary excretion of paranitrophenol and alkyl phosphates following ingestion of methyl or ethyl parathion by human subjects.
    Morgan DP; Hetzler HL; Slach EF; Lin LI
    Arch Environ Contam Toxicol; 1977; 6(2-3):159-73. PubMed ID: 900999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A transposable class I composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. strain WBC-3.
    Wei M; Zhang JJ; Liu H; Wang SJ; Fu H; Zhou NY
    FEMS Microbiol Lett; 2009 Mar; 292(1):85-91. PubMed ID: 19222584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates.
    Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A
    Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of methyl parathion by Pseudomonas putida.
    Rani NL; Lalithakumari D
    Can J Microbiol; 1994 Dec; 40(12):1000-6. PubMed ID: 7704828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3.
    Kim T; Ahn JH; Choi MK; Weon HY; Kim MS; Seong CN; Song HG; Ka JO
    J Microbiol Biotechnol; 2007 Nov; 17(11):1890-3. PubMed ID: 18092477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flood soil.
    Adhya TK; Sudhakar-Barik ; Sethunathan N
    J Appl Bacteriol; 1981 Feb; 50(1):167-72. PubMed ID: 7228819
    [No Abstract]   [Full Text] [Related]  

  • 34. Growth of Pseudomonas aeruginosa in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter.
    van der Kooij D; Oranje JP; Hijnen WA
    Appl Environ Microbiol; 1982 Nov; 44(5):1086-95. PubMed ID: 6817710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of methyl parathion from artificial off-gas using a bioreactor containing a constructed microbial consortium.
    Li L; Yang C; Lan W; Xie S; Qiao C; Liu J
    Environ Sci Technol; 2008 Mar; 42(6):2136-41. PubMed ID: 18409649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GCMS and FTIR spectral analysis of aqueous methylparathion biotransformation by the microbial mpd strains of Pseudomonas aeruginosa and Fusarium spp.
    Krishnaswamy U
    Arch Microbiol; 2021 Nov; 203(9):5763-5782. PubMed ID: 34510232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photolysis of parathion (O,O-diethyl-O-(4-nitrophenyl)thiophosphate). New products.
    Grunwell JR; Erickson RH
    J Agric Food Chem; 1973; 21(5):929-31. PubMed ID: 4733390
    [No Abstract]   [Full Text] [Related]  

  • 38. Paraoxon and parathion hydrolysis by aqueous molybdenocene dichloride (Cp2MoCl2): first reported pesticide hydrolysis by an organometallic complex.
    Kuo LY; Perera NM
    Inorg Chem; 2000 May; 39(10):2103-6. PubMed ID: 12526519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of organophosphorus pesticide detoxifying bacterial colonies, using UV-photography of parathion-impregnated filters.
    McDaniel CS; Wild JR
    Arch Environ Contam Toxicol; 1988 Mar; 17(2):189-94. PubMed ID: 3355233
    [No Abstract]   [Full Text] [Related]  

  • 40. A Flavobacterium sp. that degrades diazinon and parathion.
    Sethunathan N; Yoshida T
    Can J Microbiol; 1973 Jul; 19(7):873-5. PubMed ID: 4727806
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.