These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 410382)

  • 1. Effect of metal-binding and other compounds on methane oxidation by two strains of Methylococcus capsulatus.
    Stirling DI; Dalton H
    Arch Microbiol; 1977 Jul; 114(1):71-6. PubMed ID: 410382
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.
    Patel R; Hou CT; Felix A
    J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the substrate and electron-donor specificities of the methane mono-oxygenases from three strains of methane-oxidizing bacteria.
    Stirling DI; Colby J; Dalton H
    Biochem J; 1979 Jan; 177(1):361-4. PubMed ID: 106847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).
    Green J; Dalton H
    Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.
    Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P
    Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase.
    Lontoh S; Zahn JA; DiSpirito AA; Semrau JD
    FEMS Microbiol Lett; 2000 May; 186(1):109-13. PubMed ID: 10779721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Valentine AM; LeTadic-Biadatti MH; Toy PH; Newcomb M; Lippard SJ
    J Biol Chem; 1999 Apr; 274(16):10771-6. PubMed ID: 10196150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds.
    Colby J; Stirling DI; Dalton H
    Biochem J; 1977 Aug; 165(2):395-402. PubMed ID: 411486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide.
    Jiang Y; Wilkins PC; Dalton H
    Biochim Biophys Acta; 1993 Apr; 1163(1):105-12. PubMed ID: 8476925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath).
    Zahn JA; DiSpirito AA
    J Bacteriol; 1996 Feb; 178(4):1018-29. PubMed ID: 8576034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria.
    Bont JA
    Antonie Van Leeuwenhoek; 1976; 42(3):255-9. PubMed ID: 825038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath).
    Lund J; Woodland MP; Dalton H
    Eur J Biochem; 1985 Mar; 147(2):297-305. PubMed ID: 3918864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of CO-binding cytochrome c in enzymatic oxidation of methane by the bacterium Methylococcus capsulatus].
    Gvozdev RI; Nikonova EL; Piliashenko-Novokhatnyi AI; Shushenacheva EV; Grigorian AN
    Biokhimiia; 1982 Jul; 47(7):1118-24. PubMed ID: 6288124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects.
    Wilkins PC; Dalton H; Samuel CJ; Green J
    Eur J Biochem; 1994 Dec; 226(2):555-60. PubMed ID: 8001570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5.1.
    Smith KS; Costello AM; Lidstrom ME
    Appl Environ Microbiol; 1997 Nov; 63(11):4617-20. PubMed ID: 9361449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    J Bacteriol; 1979 Aug; 139(2):675-9. PubMed ID: 222739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of dimethyl nitrosamine by Methylosinus trichosporium OB3b.
    Yoshinari T; Shafer D
    Can J Microbiol; 1990 Dec; 36(12):834-8. PubMed ID: 2127906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obligate methylotrophy: evaluation of dimethyl ether as a C1 compound.
    Meyers AJ
    J Bacteriol; 1982 May; 150(2):966-8. PubMed ID: 6802804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.
    Singh BK; Tate KR; Kolipaka G; Hedley CB; Macdonald CA; Millard P; Murrell JC
    Appl Environ Microbiol; 2007 Aug; 73(16):5153-61. PubMed ID: 17574997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.