These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 410435)

  • 1. Changes in Escherichia coli cell envelope structure and the sites of fluorescence probe binding caused by carbonyl cyanide p-trifluoromethoxyphenylhydrazone.
    Helgerson SL; Cramer WA
    Biochemistry; 1977 Sep; 16(18):4109-17. PubMed ID: 410435
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in E. coli cell envelope structure caused by uncouplers of active transport and colicin E1.
    Helgerson SL; Cramer WA
    J Supramol Struct; 1976; 5(3):291-308. PubMed ID: 828690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of N-phenyl-1-naphthylamine as a probe of membrane energy state in Escherichia coli.
    Cramer WA; Postma PW; Helgerson SL
    Biochim Biophys Acta; 1976 Dec; 449(3):401-11. PubMed ID: 793617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the membrane potential in bacterial membrane vesicles from the accumulation of N-methyldeptropine.
    Ruifrok PG; Konings WN; Meijer DK
    FEBS Lett; 1979 Sep; 105(1):171-6. PubMed ID: 385342
    [No Abstract]   [Full Text] [Related]  

  • 5. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane changes in Escherichia coli induced by colicin Ia and agents known to disrupt energy transduction.
    Nieva-Gomez D; Konisky J
    Biochemistry; 1976 Jun; 15(13):2747-53. PubMed ID: 779829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport in Halobacterium halobium envelope vesicles.
    Belliveau JW; Lanyi JK
    Arch Biochem Biophys; 1978 Feb; 186(1):98-105. PubMed ID: 629541
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the depolarization of the Escherichia coli cell membrane by colicin E1.
    Gould JM; Cramer WA
    J Biol Chem; 1977 Aug; 252(15):5491-7. PubMed ID: 18466
    [No Abstract]   [Full Text] [Related]  

  • 9. Anilinonaphthalenesulfonate as a fluorescent probe of the energized membrane state in Escherichia coli cells and sonicated membrane particles.
    Griniuviene B; Dzheia P; Grinius L
    Biochem Biophys Res Commun; 1975 May; 64(2):790-6. PubMed ID: 1096884
    [No Abstract]   [Full Text] [Related]  

  • 10. Relationship between oxygen-induced proton efflux and membrane energization in cells of Escherichia coli.
    Gould JM; Cramer WA
    J Biol Chem; 1977 Aug; 252(16):5875-82. PubMed ID: 18476
    [No Abstract]   [Full Text] [Related]  

  • 11. Stimulation of respiration-linked proton efflux in Escherichia coli by carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP).
    Gould JM
    Biochem Biophys Res Commun; 1979 May; 88(2):589-96. PubMed ID: 380565
    [No Abstract]   [Full Text] [Related]  

  • 12. Colicin E1-induced membrane de-energization in Escherichia coli [proceedings].
    Hammond SM; Cramer WA
    Biochem Soc Trans; 1979 Oct; 7(5):1145-7. PubMed ID: 389704
    [No Abstract]   [Full Text] [Related]  

  • 13. Uncoupling action of amytal in membrane vesicles from Escherichia coli.
    Boonstra J; Ottema S; Sips HJ; Konings WN
    Eur J Biochem; 1979 Dec; 102(2):383-8. PubMed ID: 393507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 15. Energetics of sodium efflux from Escherichia coli.
    Borbolla MG; Rosen BP
    Arch Biochem Biophys; 1984 Feb; 229(1):98-103. PubMed ID: 6322694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.
    Tsuchiya T; Hasan SM; Raven J
    J Bacteriol; 1977 Sep; 131(3):848-53. PubMed ID: 330502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of active transport vesicles of Escherichia coli into oxidative phosphorylation vesicles.
    Mével-Ninio M; Yamamoto T
    Biochim Biophys Acta; 1974 Jul; 357(1):63-6. PubMed ID: 4606390
    [No Abstract]   [Full Text] [Related]  

  • 18. The mechanism of glucose 6-phosphate transport by Escherichia coli.
    Sonna LA; Ambudkar SV; Maloney PC
    J Biol Chem; 1988 May; 263(14):6625-30. PubMed ID: 3283129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional reconstitution of EDTA-treated Escherichia coli.
    Brunner DP; Caputo RA; Treick RW
    Biochem Biophys Res Commun; 1977 Feb; 74(3):919-25. PubMed ID: 402915
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural changes in the cell membrane of lambda-lysogenic Escherichia coli induced by colicin E2.
    Yamamoto H; Beppu T; Arima K
    Biochem Biophys Res Commun; 1977 Feb; 74(3):1077-82. PubMed ID: 320975
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.